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On the Design of Mutually Aware Optimal
Pricing and Load Balancing Strategies for Grid

Computing Systems
Qin Zheng and Bharadwaj Veeravalli, Senior Member, IEEE

Abstract—Managing resources and cleverly pricing them on computing systems is a challenging task. Resource sharing
demands careful load balancing and often strives to achieve a win-win situation between resource providers and users. Toward
this goal, we consider a joint treatment of load balancing and pricing. We do not assume static pricing to determine load
balancing, or vice versa. Instead, we study the relationship between the price that a computing node is charged and the load
and revenue that it receives. We find that there exists an optimal price which maximizes the revenue. We then consider a multi-
user environment and explore how the load from a user can be balanced on processors with existing loads. Finally, we derive an
optimal price that maximizes the revenue in the multi-user environment. We evaluate the performance of the proposed algorithms
through simulations.
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1 INTRODUCTION
In this paper, we consider a grid computing system
where compute nodes are heterogeneous and their
prices vary dynamically. We do not assume that they
are fully cooperative and unselfish. Further, we con-
sider a multi-user environment where the current load
needs to be balanced onto nodes with existing loads.
Finally, we consider different objectives of users and
providers where the user wants to minimize the cost
and response time while the provider wants to max-
imize the revenue. This paper first studies how load
balancing and pricing influence each other where the
load on nodes and their charged prices are dynamic.
We find out that the provider’s revenue is maximized
when its node is charged at a certain optimal price.
This optimal price can be determined given the output
of the underlying load balancing approach. Then the
load is re-balanced with respect to these new optimal
prices for the current job. Therefore, pricing and load
balancing are “mutually aware”.

1.1 Related Works on Load Balancing
The purpose of load balancing is to improve the
performance of applications by allocating them prop-
erly on the computing nodes. Common performance
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metrics considered are response time or cost to ap-
plications, which are representative parameters for
the service level agreement (SLA). Existing load
balancing approaches are categorized in [8] as: 1)
global approach, 2) cooperative approach, and 3) non-
cooperative approach. In the global approach, a cen-
tralized decision maker minimizes the expected re-
sponse time of the system. Many existing approaches
fall into this category. In the cooperative approach, the
computing nodes cooperate in making the decisions
such that each of them will operate at its optimum.
This is implemented by a cooperative game theory
[13]. In the non-cooperative approach, each decision
maker attempts to minimize its own response time by
playing a non-cooperative game with other decision
makers. The equilibrium reached eventually is called
Nash equilibrium [2], which is a strategy profile with
the property that no decision maker can benefit by
changing its own decision unilaterally. Existing works
in this category include [5], [8], [17], [11].

Load balancing approaches to minimize job re-
sponse time or cost in distributed systems or Grids
[1] have been developed in [4]-[10]. Queuing models
have been widely used to model systems with shared
resources, in order to give estimates of the perfor-
mance. By modeling each node as an M/M/1 queuing
system, the expected response time at each node can
be determined. Consequently, the optimal load distri-
bution to minimize the overall response time for user
jobs is derived [4], [5], [6], [7], [8]. We broadly define
this approach as MinRT. Following this approach and
assuming a constant k that maps the execution time
to the amount of resources required, the optimal load
distribution to minimize the overall cost for user jobs
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is derived [9], [10]. We broadly define this approach
as MinC. Both approaches assume that prices of all
nodes are given and fixed.

These two approaches consider one objective, that
is, minimizing the response time or minimizing the
cost. As a result, MinC prefers low-price nodes and
when the system load is high, these nodes may be-
come hot spots leading to long response time. On the
other hand, MinRT prefers nodes with short response
time without considering their prices, which may re-
sult in high cost. Finally, these two approaches benefit
the users by providing them load balancing solutions
with the minimum response time or cost. However,
the objective of a resource provider, to maximize
its revenue, is not taken into account. We note that
it conflicts with the objective of MinC, which is to
minimize the cost on behalf of the user.

1.2 Related Works on Pricing
Economic models have been proposed for distributed
systems and Grids in recent studies [14], [15], [16],
[17], [18], [19]. According to [19], fewer resources
are wasted, while excess capacity and overloading
are averaged over a very large number of providers
and consumers. Further, they comment that in an
economic model, all participants are considered self-
interested. The resource providers are trying to maxi-
mize their revenues. The consumers want to obtain
the maximum possible resources for the minimum
possible price. Indeed, the various computers within a
Grid site may not even cooperate with each other [17],
for example, the noncooperation among departments
in a large organization. It is also noted for the case of
Internet that providers simply seek to maximize their
own profit by charging users for access to their service
[20].

A competition model is presented in [14], which
describes the possible interactions between the com-
peting resources in the Grid as service providers and
ubiquitous applications as subscribers. It assumes that
demand function is linear in all QoS parameters and
investigates when the reduction in price leads to
increase or decrease in revenue. In [15], the authors
estimate (by aggregating historical information) the
accuracy of predictions by the resource provider on
when resources will be available and their price.
Their scheduling and admission control policies are
extended to factor in both resource-uncertainty and
risk. To aid the users in deciding how much funding
their jobs would need to complete, the authors of [16]
develop a suite of price prediction models and tools
by analyzing historical data. A hierarchical game-
theoretic model of the Grid is presented in [17], which
takes into account nodes selfishness and analytically
derives the Nash equilibrium and optimal strategies.
The authors of [18] consider pricing by adding a
utilization-based price on top of a base price and the

ratio between these two is the ratio of the maximum
capacity over the free capacity (after serving this job
and other jobs). A simulation study is reported in
[19], which validates their choice of utility, price, and
satisfaction function, to get some intuition regard-
ing the transient and the steady state behavior of
their economic models, assuming that all providers
reveal their capacity and pricing parameters to the
broker. Recently, as demonstrated on an experimental
resource market at Google [3], by allowing prices
to fluctuate using the proposed auction mechanisms,
the authors observe an efficient transition of users
from more congested resource pools to less congested
resources.

Our work is different from existing pricing algo-
rithms as we consider how owners can price their
resources given the load balancing decision. We also
investigate how pricing may influence load balancing
decisions and the provider’s revenue. Further, instead
of estimating the price using historical data, we for-
mulate it as an optimization problem and derive the
optimum price that maximizes the revenue. This opti-
mum price takes into account aggregated information
on prices and service rates of all nodes in the system.
Finally, we explain how to balance the load on nodes
with existing loads and how to price nodes when the
user load is balanced using a global approach or a
greedy approach.

2 PROBLEM FORMULATION
There is a resource broker in the system and it
manages the computing nodes and acts as the inter-
mediary between them and external users. Figure 1
shows a system with a broker and n heterogeneous
computing nodes. Suppose there is a user with an
arrival rate φ. Nodes are heterogeneous and each node
i is characterized by its average service rate μi (load
serviced per time unit) and the price per unit service
rate pi (the same price definition is used in [10]). We
use a vector p to represent the prices of all nodes. Let
βi denote the fraction of φ allocated to node i and β

denote a vector representing the fractions allocated to
all nodes. The broker will determine a subset of nodes
for load balancing and their arrival rate fractions,
based on the arrival rate φ and service rates and
prices of all nodes. Consequently, the expected cost
and response time for this job are known. The broker
also facilitates the owners on pricing their resources
to maximize their revenues. Note that the price for a
node should also be decided taking into account the
user arrival rate and service rates and prices of all
other nodes.

The objective of load balancing is to find a vector β

such that the response time or cost to the user is min-
imized. Formally, for the case of cost minimization,

minC(β, p), (1)
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Fig. 1. The system model.

subject to 0 ≤ βi ≤ μi and
∑

1≤i≤n

βi = φ. We denote

this problem as the optimal load balancing problem. It
can be solved by the MinC theory, which derives the
optimal arrival rate fractions minimizing the cost. We
will discuss them in details in Section 3.1. Finally, a
user may have a maximum total cost that he is willing
to pay. If the overall cost is higher than his budget,
he may not use the resources.

On the other hand, the objective of the owner of
node i is to maximize the revenue, that is

maxRi(βi, pi), (2)

where Ri(βi, pi) = piβi.

We denote this problem as the optimal pricing
problem and its solution is the price that leads to
the maximum revenue. Note that this optimal rev-
enue helps an owner decide whether to participate
considering its cost. Readers are referred to [22] for a
detailed discussion on costs associated with providing
resources for grid computing. Also, we note that an
owner may own multiple computers while in this
paper the revenue that each computer generates is
maximized individually.

Note that the optimal load balancing problem and
the optimal pricing problem have somehow conflict-
ing objectives. However, they are two coupled prob-
lems as the optimal price depends on the arrival
rate fractions and vice versa. Therefore, it is bene-
ficial for them to be mutually aware. Further, it is
important to consider both of them in an integrated
manner in order to optimize the objectives of users
and providers. Toward this goal, we will develop
pricing algorithms that interact with the underlying
load balancing approach.

3 AN INTEGRATED OPTIMAL LOAD BAL-
ANCING AND OPTIMAL PRICING FRAME-
WORK
The pricing issue and the load balancing issue are
interrelated. The distribution of the arrival rate on
nodes depends on their prices. On the other hand,
the optimal prices also depend on the fractions of the
arrival rate assigned to the nodes. Therefore, both are
dynamic variables. In our design, they are mutually
aware and integrated. In this section, we first explain
the MinC approach, which determines the optimal
distribution of the arrival rate given the prices of all
nodes. Then we explain our pricing theory, which
determines the optimal price given the arrival rate
fractions of all the nodes.

3.1 Optimal Load Balancing
We use MinC as the underlying load balancing ap-
proach for our pricing work. In MinC, each node is
modeled as an M/M/1 queuing system and hence the
expected response time at node i is 1

μi−βi
. Recall that

a constant ki is assumed to map the execution time
to the amount of resources consumed at node i. The
objective of this approach is to minimize the overall
job cost, that is

min
∑

1≤i≤n

kipiβi

μi − βi

. (3)

Note that we could also have the arrival rate φ on
the denominator so that the cost is averaged over
the arrival rate. However, it will not affect the load
balancing decision. For simplicity, in the remaining
derivations, we let ki equal to 1. The optimal arrival
rate fraction to the above optimization problem, as
given in [9], [10], is:

βi = μi −
√
μipi

Si,1 + μi − φ

Si,2 +
√
μipi

(4)
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Where

Si,1 =
∑

1≤j≤n,j �=i

μj , Si,2 =
∑

1≤j≤n,j �=i

√
μjpj .

The optimal arrival rate allocation may not always
be practical since βi is not guaranteed to be non-
negative. βi is negative if

√
μi

pi
<

∑
1≤i≤n

μi − φ

∑
1≤i≤n

√
piμi

. (5)

Therefore, in [9], [10], nodes are sorted in a list in
non-decreasing order of their μi

pi
values (μ1

p1

≤ μ2

p2

≤
... ≤ μn

pn
). If there exists a node m (1 ≤ m < n) with

√
μm

pm
<

∑
m≤i≤n

μi − φ

∑
m≤i≤n

√
μipi

, then βi = 0 (1 ≤ i ≤ m). That

is, m is the largest i for which the inequality holds.
An example is shown in Figure 2 where 16 nodes

are sorted in a non-decreasing order of their μi

pi
values.

The blue bar shows the service rate of the node and
four of them (with high μi

pi
values) are used to process

the current arrival rate (where the portion in red
denotes βi). It can be observed that βi does not follow
a non-decreasing order as it is also determined by its
service rate as can be seen in Equation 4.

We note that after the current arrival rate, the nodes
in the list still have their μi

pi
values in order. It can be

proved as follows. For a node i that is selected to
process the current arrival rate (βi > 0,m < i ≤ n), its
effective service rate will be μi−βi =

√
μipi

Si,1+μi−φ

Si,2+
√
μipi

and its μi−βi

pi
=

√
μi

pi

Si,1+μi−φ

Si,2+
√
μipi

. Therefore, the order is
maintained among these nodes with βi > 0. Further,
this new value is larger than that of a node i with
βi = 0 (1 ≤ i ≤ m) due to Equation 5.

If Si,1 ≤ φ, it implies that in this case node i is
dominant. That is, if Si,1 < φ, the current arrival rate
cannot be assigned without node i. Or, if Si,1 = φ,
the current arrival rate can be balanced but will use
up resources at all other nodes (besides i). Finally,
note that the above arrival rate fraction is derived
assuming that prices of all nodes are given and fixed.

3.2 Optimal Pricing Theory
In the following, we study the relationship between
the revenue that an owner receives and the price
that it charges. As an owner wants to maximize
its revenue, it may use its price as a strategy and
overcharge for its resource. However, we will show
that increasing its price may decrease its arrival rate
fraction monotonically. Further, there exists an opti-
mal price that maximizes the revenue received by
each node, if this node is not dominant.

When the owner of i increases its price, suppose
that the prices of other nodes remain the same, the
fraction of arrival rate φ that it receives decreases
monotonically. This can be observed by rewriting
Equation 4 in the following form:

βi = μi −
Si,1 + μi − φ

1 +
Si,2√
μipi

. (6)

Therefore, when an owner increases its price, its
revenue is not necessarily increased. The following
theorem formally determines when an owner’s rev-
enue is increasing or decreasing with its price, if prices
of all other nodes remain the same.

Theorem 1. i) If node i is dominant, owner i’s revenue
is monotonically increasing with its pi from pi = 0. ii)
Otherwise, owner i’s revenue is monotonically increasing
with its pi from pi = 0 until p∗i , when its maximum
revenue (denoted as R∗

i ) is achieved; after that, its revenue
is monotonically decreasing to 0; and

√
p∗i is the (only)

positive root (−B−√
B2−4AC
2A

) of a quadratic function with
A = −2μi(Si,1 − φ)
B =

√
μiSi,2 [μi − 3(Si,1 − φ)]

C = 2μi(Si,2)
2

Proof: We have

Ri(βi, pi) = piβi = pi(μi −
√
μipi

Si,1 + μi − φ

Si,2 +
√
μipi

). (7)

The last step is because we substitute βi using
Equation 4. It can be observed that now Ri is solely
determined by pi. Further, Ri equals to 0 when pi
is 0. In the following, we consider its derivative and
continue from Equation 7, we have

∂Ri(βi, pi)

∂pi
=

1

2(
√
μipi + Si,2)2

{
A(

√
pi)

2 +B
√
pi + C

}
(8)

A = −2μi(Si,1 − φ)
B =

√
μiSi,2 [μi − 3(Si,1 − φ)]

C = 2μi(Si,2)
2

It can be observed that on the right side of the
equation, the part inside the braces is actually a
quadratic function of

√
pi. As 2(

√
μipi + Si,2)

2 must
be positive, whether the derivative of Ri(βi, pi) is
positive or negative or zero is determined by the
quadratic function. It can be observed that C must be
positive. The parabola opens upward or downward
depending on whether Si,1−φ is negative or positive,
respectively.

When Si,1 − φ is negative, A is positive and the
parabola opens upward. Further, B must be positive.
Recall that C is positive. Therefore, when pi increases
from 0, the quadratic function will strictly increase
from 0. As a result, the derivative of the owner’s
revenue will remain positive and hence the revenue
will increase monotonically. For the special case that
Si,1−φ is 0, it becomes a linear function. The revenue
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Fig. 2. An example for MinC on 16 nodes.
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will also increase monotonically with
√
pi. Therefore,

when Si,1−φ is non-positive, i.e., node i is dominant,
its owner can receive more revenue by increasing its
price.

Otherwise, i.e., when Si,1 − φ is positive, the
parabola opens downward. It can be observed that
B can be positive, negative or zero depending on
whether μi is greater than, smaller than or equal to
3(Si,1−φ). The positive case is shown in the left graph
in Figure 3. We will explain this case and the same
result can be obtained for the zero and negative cases,
as shown in the middle and right graphs in the figure.
When pi increases from zero till it reaches the positive
root of the quadratic function, the quadratic function,
and hence the derivative of the owner’s revenue
is positive. After this point, the derivative becomes
negative. Therefore, the optimal revenue (denoted as
R∗

i ) is reached when
√
pi is at the positive root. This

optimal value for
√

p∗i is −B−√
B2−4AC
2A

.

This theorem implies that if a node is dominant,
then its owner can receive more revenue by increasing
its price. Otherwise, in the general case, there is
an optimal price for the owner that maximizes its
revenue. This maximum revenue can help the owner
decide whether to process the current arrival rate. It
also provides guidance to owners on how to opti-
mally price their resources. Therefore, the amount of
resources (supply) could change for each arrival rate.
However, the supply is still bounded by the capacity
of the system as external resources are not able to
participate. Therefore, the supply is not following a
true supply curve defined by the open market.

For resource allocation in distributed systems, it is
normally assumed that all resource providers reveal
their capacity and pricing parameters to the broker
[19]. In our work, it can be observed that in order to
determine the optimal price for a node, the broker
only needs to know Si,1 and Si,2 besides the user
arrival rate and the capacity of this node. On the
other hand, an owner can determine its optimal price
when provided with information on these two aggre-
gated values only, rather than the service rate and
price information from each individual node. Note
that these nodes are non-cooperative and they are
not willing to reveal their service rates and prices
to other owners. Therefore, our pricing mechanism,
which requires only aggregated information, has a
higher chance to be accepted by owners.

Note that the optimal price for a node is determined
by the set of nodes selected for load balancing and
also their prices. Therefore, in the case that one or
more of these owners “lie” to the broker, the optimal
price that each of them gets is not “really” optimal. As
a result, their revenues are likely to be affected, which
in the long run may discourage them from lying.

3.3 Load Balancing Solutions with Preassigned
Rates
In this section, we extend our pricing theory to a
multi-user environment. Essentially, the arrival rate
from a user may need to be balanced after a few
other users have done so, that is, onto processors
with already assigned arrival rates. Also, preassigned
rates exist even for a single user if his arrival rate
arrives at different time instances. Next, we will first
explain how new arrival rate can be balanced with
preassigned rates. Suppose that there is a new arrival
rate φ and ci denotes the preassigned arrival rate on
node i. We consider two load balancing approaches:
global and greedy. In the global approach, the cost is
minimized for the whole system, that is,

min
∑

1≤i≤n

pi(βi + ci)

μi − βi − ci
. (9)

Using the Lagrange multiplier theorem, the solution
for this constrained-minimum problem is

βi = μi − ci −
√
μipi

S′
i,1 + μi − ci − φ

Si,2 +
√
μipi

(10)

where S′
i,1 =

∑
1≤j≤n,j �=i

(μj − cj). The detailed proof is

not given in this paper and it can be proved following
the steps for the case without preassigned rates in [21].
Similarly, nodes are sorted in a list in non-decreasing
order of their μi−ci√

μipi
values to determine the set of

nodes that should not be assigned any arrival rate.
We find out that this global approach can be im-

plemented in a simple way. Suppose that the current
arrival rate is φ. Instead of calculating βi according
to Equation 10, we can invoke MinC with arrival rate
φ+

∑
1≤i≤n ci. That is, the overall arrival rate till this

time. Let di denote the returned arrival rate fraction.
Then βi for this current arrival rate can be calculated
by di − ci. In this way, the preassigned rate (ci) does
not have to be known by MinC. The proof sketch on
the correctness of this alternative way is given in the
Appendix. Finally, we note that this alternative way
will not work if the prices of nodes are changing, for
example, with the proposed optimal pricing theory.
The reason is that, as can been seen in the proof,
the order of the nodes in the list (in terms of their
μi

pi
values) is no longer fixed when their prices are

changing.
In the greedy approach, the objective is to minimize

the cost for the current arrival rate (from a certain
user), that is,

min
∑

1≤i≤n

piβi

μi − βi − ci
. (11)

Using the Lagrange multiplier theorem, the solution
for this constrained-minimum problem is

βi = μi − ci −
√
(μi − ci)pi

S′
i,1 + μi − ci − φ

S′
i,2 +

√
(μi − ci)pi

(12)
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where S′
i,2 =

∑
1≤j≤n,j �=i

√
(μj − cj)pj . Similarly, nodes

are sorted in a list in non-decreasing order of their
μi−ci
pi

values to determine the set of nodes that should
not be assigned any arrival rate.

3.4 Pricing Solutions with Preassigned Rates
In this section, we explain how to price nodes when
they have preassigned rates. We consider the global
and greedy load balancing approaches described
above. For the global approach, similar to the optimal
price without preassigned rates in Section 3.2 (and
hence the proof is not given), the optimal price is still
the (only) positive root of a quadratic function. For
the quadratic function, A, B and C are different due
to the preassigned arrival rates.

A = −2μi(S
′
i,1 − φ)

B =
√
μiSi,2

[
μi − ci − 3(S′

i,1 − φ)
]

C = 2(μi − ci)(Si,2)
2

For the greedy approach, similarly, the optimal
price is the (only) positive root of a quadratic function
with

A = −2(μi − ci)(S
′
i,1 − φ)

B =
√
μi − ci S

′
i,2

[
μi − ci − 3(S′

i,1 − φ)
]

C = 2(μi − ci)(S
′
i,2)

2

Similarly, the above optimal prices are for the gen-
eral case where no node is dominant. Otherwise, the
owner who dominates can receive more revenue by
increasing its price. Further, to determine the optimal
price for a node, only aggregate information from
other nodes (S′

i,1 and Si,2 (or S′
i,2)) is needed.

3.5 Complexity
We now analyze the complexity of the proposed
framework. Note that when Si,1 and Si,2 (both take
O(n)) are known, the optimal price for an owner can
be computed in O(1) (to calculate A, B, and C in
Theorem 1). There are at most n nodes and hence
the optimal prices for the set of nodes selected for
load balancing can be calculated in O(n) at most.
Finally, MinC takes O(n log n). Therefore, the overall
complexity is O(n log n).

4 PERFORMANCE EVALUATION
In this section, we evaluate the performance of the
proposed algorithms (denoted as OptP), which inte-
grate pricing with load balancing. We compare them
with MinC and MinRT . Further, we also compare
with two alternative approaches where owners, given
the optimal prices, can decide whether to use the
optimal prices or how to charge based on the optimal
prices. In the first approach, owners choose to adopt
the optimal prices randomly. That is, on average the
optimal prices are used for half of the jobs. This
approach is denoted with “R” in the results. In the
second approach, owners always set prices at the

average of the optimal price and the last-round price.
This approach is denoted with “A” in the results. The
objective of comparing with these two approaches is
to study the effect of owners’ price decisions on the
performance.

The scenario considered may have multiple users
with arrival rates coming at different time instances.
The arrival rate from a user is balanced on nodes that
could have already assigned arrival rates. The greedy
approach (default, without additional notation) and
the global approach (denoted with “global”) in Sec-
tion III.C are used for load balancing. We consider a
system with a large number of (1600) heterogeneous
nodes. Service rates of these nodes are assumed to be
uniformly distributed in the range [2.0, 20.0]. Initial
prices of nodes can be set by their owners and in
our experiments they are assumed to be uniformly
distributed in the range [0.1, 1.0]. Note that our pro-
posed pricing algorithms do not depend on the initial
prices of nodes. Job arrival is assumed to follow
Poisson process as has been used in [8], [11], [12]. For
job arrival rates, we consider two cases. In the first
case, the arrival rate is assumed to be exponentially
distributed with a mean of 20.0. In the second case,
the arrival rate is assumed to follow a heavy tail
distribution as found out by previous studies in most
computing systems according to [6]. In this case, a
small number of very large jobs make up a significant
portion of the total load. We use the Bounded Pareto
distribution with the probability density function as
given in [6]. For job execution time, we use exponen-
tial distribution as has been suggested in the literature
[8], [9], [11]. The simulations were run over 1,000,000
jobs with different random number streams at each
run. In order to obtain stable and accurate results
with a confidence of 95%, each of our experiments
was repeated 25 times and an average was taken.

The performance metrics used are the expected cost
and response time per job where

cost=
∑

1≤i≤n

piβi

μi − βi − ci
, RT=

∑
1≤i≤n

βi

μi − βi − ci
and

RT (max) = φ · max
1≤i≤n

1

μi − βi − ci
.

RT and RT (max) differ in that the former reflects
the sum of the expected response time for the load
distributed on all used nodes while the latter reflects
the maximum of the expected response time among
the used nodes. Note that the expected cost equals to
the revenue received by all nodes selected for this job.

Table I shows the performance of all algorithms
for Exponential distributed arrival rates at light to
moderate load. We observe that the proposed pricing
algorithms, OptP (using the greedy load balancing
algorithm) and OptP global (using the global load
balancing algorithm), achieve a response time close to
that of MinRT. For MinC, it results in a long response
time as it prefers low-price nodes. For cost, MinRT
results in a high cost as it prefers nodes with short
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TABLE 1
Results for Exponential distributed arrival rates at light to moderate load

Algs MinRT MinRT global MinC MinC global OptP OptP global OptP R OptP global R OptP A OptP global A
RT 726 745 1000 861 768 752 769 754 765 747

RT (max) 729 925 2833 3019 1033 1209 1328 1588 1000 1148

Cost 397 410 282 304 355 352 351 349 358 356

TABLE 2
Results for Exponential distributed arrival rates at moderate to heavy load

Algs MinRT MinRT global MinC MinC global OptP OptP global OptP R OptP global R OptP A OptP global A
RT 3783 3819 3908 3853 3793 3825 3798 3831 3789 3822

RT (max) 4014 8491 21373 16549 4060 8644 4437 8991 4027 8632

Cost 2073 2101 2018 2050 1828 1834 1804 1813 1807 1816

TABLE 3
Results for heavy-tail distributed arrival rates at light to moderate load

Algs MinRT MinRT global MinC MinC global OptP OptP global OptP R OptP global R OptP A OptP global A
RT 751 771 1015 879 789 778 789 779 785 773

RT (max) 752 977 2997 3195 924 1145 1186 1655 942 1142

Cost 411 424 301 324 367 364 363 362 371 368

TABLE 4
Results for heavy-tail distributed arrival rates at moderate to heavy load

Algs MinRT MinRT global MinC MinC global OptP OptP global OptP R OptP global R OptP A OptP global A
RT 11942 11978 12065 12012 11952 11984 13360 13379 11948 11980

RT (max) 11946 27633 64665 51829 12103 27717 21248 41782 12093 27730

Cost 6545 6588 6489 6521 35421 35426 17283 17411 20233 20242

response time without considering their prices. As
a result, the user may have to pay a high cost. On
the other hand, by minimizing the cost, in MinC
the expected revenue is the lowest and may not be
acceptable to the provider.

By jointly maximizing the provider’s revenue
through pricing, the proposed integrated framework
achieves a nice tradeoff in the expected cost for a
win-win situation between the user and the provider.
We also observe that at the light load the proposed
algorithms, OptP and OptP global, perform closely
with two alternative approaches (OptP R and OptP
A). One exception is that in the random approach
(R), the RT (max) is longer, which is not good to
the users. Finally, the performance difference between
using the global load balancing approach and the
greedy load balancing approach is not significant for
every algorithm.

Table II shows the performance of all algorithms
for Exponential distributed arrival rates at moderate
to heavy load. Firstly, it can be observed that both
response time and cost are increased significantly. The
proposed algorithms achieve a response time close to
that of MinRT. For MinC, it results in a long response
time (max) as it continues using low-price nodes even
if they are saturated. For cost, MinRT results in a
highest cost as it prefers nodes with short response
time without considering their prices. The cost yielded

by MinC is also high due to two reasons. Firstly,
especially at heavy load, it has to balance the load on
high-price nodes as the capacity of low-price nodes
has been largely used. Secondly, as the response time
yielded by MinC is long, a provider will receive a
higher cost for the duration. The proposed integrated
framework in fact yields a lower cost by considering
the objectives of both the user and the provider. Note
that it is not that MinRT and MinC could maximize
the revenue (cost) but due to their design as just
described. The cost yielded by the proposed pricing
algorithms is more reasonable and is more acceptable
to the user. We also observe that comparing to the two
alternative approaches, the random approach (OptP
R) still results in a longer RT (max). The optimal
pricing algorithm (OptP) achieves a higher revenue
than the average approach (OptP A), which takes a
conservative approach by taking the average between
the optimal price (for the current load) and the price
charged for the last round. Finally, the performance
between the global approach and the greedy approach
now differ significantly in RT (max). This is because
by greedily balancing the current load, a less expected
response time could be achieved although the overall
system performance may suffer.

Similar trends on performance can be observed
for heavy-tail distributed arrival rates except that at
heavy load, both response time and cost are increased
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TABLE 5
Results for heavy-tail distributed arrival rates at moderate to heavy load with a limit on the price

Algs OptP (1.5) OptP global (1.5) OptP (2.0) OptP global (2.0) OptP (2.5) OptP global (2.5)
RT 12120 12026 11975 11990 11952 11984

RT (max) 81237 59896 88754 54568 12103 27726

Cost 8733 8749 9559 9571 9668 9680

significantly due to a small number of very large jobs.
Also, at high load the cost yielded by the proposed
pricing algorithms are much higher. This is because
there are very large jobs and some nodes can get a
large fraction of the arrival rates from them, when
they charge at their optimal prices (which could be
high). As a result, these nodes generate high revenue
and also result in a high cost to users. To confirm
the cause of this high cost at high load for heavy-tail
distribution and enable us to control it in the proposed
approaches, we carry out the following experiments.

In the following, we set a limit on the price that
an owner can charge at each round. Specifically, the
optimal price can only be used if it is not greater than
x times of the last-round price. This is to avoid the
case that an owner receives a large load charged at a
high price, which results in a high cost. We note that
a user may have a budget constraint or may choose
another provider considering the cost, which means
the provider may not receive any revenue at all. Also,
this budget constraint may be facilitated by the broker.
We vary x in the simulations and the results in Table
V correspond to its value at 1.5, 2.0 and 2.5. It can be
observed that by giving tight limits, the cost can be
controlled. When we relax the limit, the cost increases
gradually until at a certain point as we observed. The
point is when the limit is more than five times and
then the cost equals to the proposed optimal pricing
approach without the limit. This is because that the
limit is too loose and does not affect the price. This
also confirms that the high cost at high load for the
heavy-tail distribution is due to the high optimal price
charged (for the large fraction of the arrival rate). We
also observe that the RT does not change much with
the limit. Therefore, the provider can tune the limit for
a desired revenue while consider the cost acceptable
to users. Finally, for the RT (max), we observe that
for a tight limit, it becomes higher while beyond
2.5, it equals to the case without the limit. This is
because for a tight limit, more nodes are charged at
their last-round prices, which is (much) lower than
their optimal prices. Consequently, the load balancing
algorithm will allocate more load to these nodes as
they are moving towards the end of the sorted list
(see Section III. A). As a result, their capacities may
be saturated by arriving jobs leading to long response
time (RT (max)).

5 DISCUSSIONS ON A DISTRIBUTED PRIC-
ING ALGORITHM AND ITS POTENTIAL FOR
CLOUD COMPUTING

In this section, we briefly discuss how our optimal
pricing theory can be used in a distributed man-
ner where each owner is autonomous. An owner
determines its optimal price and revenue using the
aggregated information (Si,1 and Si,2) provided by
the broker. Owners are synchronized and in each
iteration, every owner calculates its optimal price and
adjusts to it. Note that each owner assumes that the
prices of all the other nodes are kept fixed. Therefore,
owners can calculate their optimal prices indepen-
dently and simultaneously. An owner may receive
increased or decreased (or zero) fraction of the arrival
rate and revenue depending on the new prices of
other nodes. Therefore, the algorithm starts with the
initially selected nodes and in the iterations the nodes
in the set are dynamic. In each iteration, every owner
sends its new price to the broker, which returns the
(new) arrival rate fraction and the updated aggregated
information needed to calculate the optimal price for
the next iteration. Note that in this scenario the broker
is not involved in pricing decisions.

This situation can be viewed as a non-cooperative
game among decision makers (owners). Each owner
optimizes its own revenue independently of the oth-
ers. The Nash equilibrium [2] for the game is a strategy
profile with the property that no owner can increase
its expected revenue by changing its price given the
other owners’ prices. In other words a strategy profile
is a Nash equilibrium if no owner can benefit by
deviating unilaterally from its price to another feasible
one. An important question is whether this algorithm
can converge to the Nash equilibrium. In this algo-
rithm, each owner iteratively adjusts its price to the
new optimal price until no owner can receive more
revenue by unilaterally changing its price (e.g., the
Nash equilibrium is reached). That is, the expected
revenues for the set of nodes used for load balancing
all remain the same as the previous iteration. The
only known results about the convergence to the Nash
equilibrium are for distributed load balancing algo-
rithms with linear and strictly increasing link costs
[23]. The convergence proof for more than two players
with general cost functions is still an open problem
[8]. The authors of [8], [12] have demonstrated using
simulation experiments that their distributed load bal-
ancing algorithms converge to the Nash equilibrium
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in distributed systems and computational grids.
This distributed autonomous pricing algorithm can

be used for cloud environments where there might
exist multiple providers. Therefore, there could be
multiple brokers, such as the scenario described in
InterCloud [24]. In such a decentralized architecture,
these brokers may interact with each other and use
the distributed pricing algorithm to autonomously
determine prices through iterations. We note that for
it to be used with virtualized environments, which
is common for Cloud computing, the configurations
of Virtual Machines (VMs) need to be considered
in terms of allocation of their capability for user
tasks. Specifically, node capacity needs to be priced
based on an additional factor of VM configurations.
A future evaluation of the proposed optimal pricing
work in a realistic cloud setting, such as InterCloud
or Hybrid Cloud [25], [26], [27], would be useful to
investigate the application potential of this work in
such environments.

6 CONCLUSIONS

In the paper, we addressed an important problem
that integrates load balancing with pricing to provide
a win-win situation between resource owners and
users. We found that there exists an optimal price
that maximizes the revenue for each owner. To deter-
mine it, only aggregated information on processing
speeds and prices of computing nodes is required.
We developed pricing algorithms for scenarios where
the load arrives at the same time or at different time
instances possibly from multiple users. We developed
algorithms for a global approach with the objective to
optimize the system-wide performance and a greedy
approach with the objective to optimize the perfor-
mance for the current load (from a user). Through
simulation studies, we demonstrated the proposed al-
gorithms can achieve a response time close to MinRT
and a cost acceptable to both users and providers.
Therefore, they perform the best considering the two
objectives of time and cost. We do note that users can
choose alternative algorithms if they consider just one
objective or their jobs follow heavy-tail distribution
and the arrival rate is moderate or heavy. We also
note that a user can make the choice based on how
much he would like to pay for better performance.
Our optimal price theory can help an owner decide
its optimal price and revenue, which helps it decide
whether to process the current job and how to price its
resource. In the future, we plan to test the proposed
algorithms on actual platforms with realistic appli-
cations or workloads. Such an investigation together
with virtual machines would help understand the
potential of this work for cloud environments.
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