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Abstract—Privacy is one of the major concerns when publishing or sharing social network data for social science research and

business analysis. Recently, researchers have developed privacy models similar to k-anonymity to prevent node reidentification

through structure information. However, even when these privacy models are enforced, an attacker may still be able to infer one’s

private information if a group of nodes largely share the same sensitive labels (i.e., attributes). In other words, the label-node

relationship is not well protected by pure structure anonymization methods. Furthermore, existing approaches, which rely on edge

editing or node clustering, may significantly alter key graph properties. In this paper, we define a k-degree-l-diversity anonymity model

that considers the protection of structural information as well as sensitive labels of individuals. We further propose a novel

anonymization methodology based on adding noise nodes. We develop a new algorithm by adding noise nodes into the original graph

with the consideration of introducing the least distortion to graph properties. Most importantly, we provide a rigorous analysis of the

theoretical bounds on the number of noise nodes added and their impacts on an important graph property. We conduct extensive

experiments to evaluate the effectiveness of the proposed technique.

Index Terms—Social networks, privacy, anonymous
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1 INTRODUCTION

WITH the rapid growth of social networks, such as
Facebook and Linkedin, more and more researchers

found that it is a great opportunity to obtain useful
information from these social network data, such as the
user behavior, community growth, disease spreading, etc.
However, it is paramount that published social network
data should not reveal private information of individuals.
Thus, how to protect individual’s privacy and at the same
time preserve the utility of social network data becomes a
challenging topic. In this paper, we consider a graph model
where each vertex in the graph is associated with a
sensitive label. Fig. 1a shows an example of such a graph.

Recently, much work has been done on anonymizing

tabular microdata. A variety of privacy models as well as

anonymization algorithms have been developed (e.g., k-

anonymity [26], l-diversity [20], t-closeness [17]). In tabular

microdata, some of the nonsensitive attributes, called quasi

identifiers, can be used to reidentify individuals and their

sensitive attributes. When publishing social network data,

graph structures are also published with corresponding

social relationships. As a result, it may be exploited as a
new means to compromise privacy.

A structure attack refers to an attack that uses the
structure information, such as the degree and the subgraph
of a node, to identify the node. To prevent structure attacks,
a published graph should satisfy k-anonymity [18], [32],
[15], [34]. The goal is to publish a social graph, which always
has at least k candidates in different attack scenarios in order
to protect privacy. Liu and Terzi [18] did pioneer work in
this direction that defined a k-degree anonymity model to
prevent degree attacks (Attacks use the degree of a node). A
graph is k-degree anonymous if and only if for any node in
this graph, there exist at least k� 1 other nodes with the
same degree.

Fig. 1a shows an example of a possible structure attack
using degree information. If an adversary knows that one
person has three friends in the graph, he can immediately
know that node 2 is that person and the related attributes
of node 2 are revealed. k-degree anonymity can be used to
prevent such structure attacks. However, in many applica-
tions, a social network where each node has sensitive
attributes should be published [5], [33]. For example, a
graph may contain the user salaries which are sensitive
[33]. In this case, k-degree alone is not sufficient to prevent
the inference of sensitive attributes of individuals. Fig. 1b
shows a graph that satisfies 2-degree anonymity but node
labels are not considered. In it, nodes 2 and 3 have the
same degree 3, but they both have the label “80K.” If an
attacker knows someone has three friends in the social
network, he can conclude that this person’s salary is 80K
without exactly reidentifying the node. Therefore, when
sensitive labels are considered, the l-diversity should be
adopted for graphs. Again, the l-diversity concept here has
the same meaning as that defined over tabular data [20].
For example, if we choose the distinct l-diversity, for the
nodes with the same degree, their associated sensitive
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labels must have l distinct values. Fig. 1c shows a graph
that satisfies 2-degree anonymity and 2-diversity. For each
distinct degree appearing in this graph, there exist at least
two nodes. Moreover, for those nodes with the same
degree, they contain at least two distinct sensitive labels.
Thus, the attacker cannot reidentify a node or find the
node-label relation with degree knowledge. In this paper,
we select the degree-attack, one of the popular attacks
methods [18], [15], to show how we can design mechan-
isms to protect both identities and sensitive labels. With
respect to other types of attacks, such as subgraph query
attacks or hub node query attacks [15], we believe that the
key ideas proposed in this work can be adopted to handle
them as well, though more complicated extensions may be
needed. We give an extensive discussion in Section 6.

Current approaches for protecting graph privacy can be
classified into two categories: clustering [15], [7], [30], [4]
and edge editing [10], [29], [32], [18], [30]. Clustering is to
merge a subgraph to one super node, which is unsuitable
for sensitive labeled graphs, since when a group of nodes
are merged into one super node, the node-label relations
have been lost. Edge-editing methods keep the nodes in the
original graph unchanged and only add/delete/swap
edges. For example, to protect privacy of Fig. 2a, we
convert it to satisfy 3-degree anonymous and 3-diversity by
adding edges as shown in Fig. 2b. However, edge editing
may largely destroy the properties of a graph. The edge-
editing method sometimes may change the distance proper-
ties substantially by connecting two faraway nodes together
or deleting the bridge link between two communities. In
Fig. 2b, the distance between nodes 6 and 12 is changed
from 5 to 1 hop. This phenomenon is not preferred. Mining
over these data might get the wrong conclusion about how
the salaries are distributed in the society. Therefore, solely
relying on edge editing may not be a good solution to
preserve data utility.

To address this issue, we propose a novel idea to
preserve important graph properties, such as distances
between nodes by adding certain “noise” nodes into a
graph. This idea is based on the following key observation.
Most social networks satisfy the Power Law distribution

[2], i.e., there exist a large number of low degree vertices in

the graph which could be used to hide added noise nodes

from being reidentified. By carefully inserting noise nodes,

some graph properties could be better preserved than a

pure edge-editing method. Fig. 2c is a graph converted

from Fig. 2a by adding noise nodes to satisfy 3-degree-3-

diversity. The distances between the original nodes are

mostly preserved.
Our privacy preserving goal is to prevent an attacker

from reidentifying a user and finding the fact that a certain

user has a specific sensitive value. To achieve this goal, we

define a k-degree-l-diversity (KDLD) model for safely

publishing a labeled graph, and then develop correspond-

ing graph anonymization algorithms with the least distor-

tion to the properties of the original graph, such as degrees

and distances between nodes.
To summarize, we made the following contributions:

. We combine k-degree anonymity with l-diversity to
prevent not only the reidentification of individual
nodes but also the revelation of a sensitive attribute
associated with each node. We use distinct l-diversity
to demonstrate our algorithm and give the detailed
discussion about how more complex recursive
ðc; lÞ-diversity can be implemented.

. We propose a novel graph construction technique
which makes use of noise nodes to preserve utilities of
the original graph. Two key properties are consid-
ered: 1) Add as few noise edges as possible; 2) Change
the distance between nodes as less as possible.

. We present analytical results to show the relation-
ship between the number of noise nodes added and
their impacts on an important graph property. We
further conduct comprehensive experiments for both
distinct l-diversity and recursive ðc; lÞ-diversity to
show our technique’s effectiveness.

The rest of the paper is arranged as follows: Section 2 defines
the problem and introduces the framework. Sections 3 and 4
describe the details of the algorithm implementation.
Section 5 demonstrates how the more complex ðc; lÞ-diversity
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Fig. 2. Example for adding noise node.

Fig. 1. Publish a graph with degree and label anonymity.



model is adapted into our framework in detail. We discuss
the possible extension of our work to handle more complex
graph protection model in Section 6. We report the experi-
ment results on real data sets in Section 7. Finally, we
compare our work with related proposals in Section 8 and
conclude in Section 9.

2 PROBLEM DESCRIPTION

In this paper, a social network graph is defined as:

Definition 1. Social Network Graph: a social network graph is a
four tuple GðV ;E; �; �Þ, where V is a set of vertices, and each
vertex represents a node in the social network. E � V � V is
the set of edges between vertices, � is a set of labels that vertices
have. � : V �! � maps vertices to their labels.

In this paper, we use the words “node” and “vertex”
interchangeably. In a published (privacy preserving) social
network graph, an attacker could reidentify a node by
degree information [18] and further infer sensitive labels. To
prevent this possible leakage, we define “k-degree-l-diver-
sity” principle for published graphs, which have the same
spirit of k� l diversity in relational data [26], [20].

Definition 2(KDLD). For each vertex in a graph, there exist at
least k� 1 other vertices having the same degree in the graph.
Moreover, the vertices with the same degree contain at least
l distinct sensitive labels.

Here, we use distinct l-diversity [20] to ensure that there
exist at least l distinct labels in each equivalent class (group),
i.e., a group of nodes having the same degree.1 We use
distinct l-diversity to demonstrate the basic working
procedure of our method. We give the detailed discussion
about how to handle more complex l-diversity such as
recursive ðc; lÞ-diversity in Section 5. We call a graph a KDLD
graph if it satisfies the k-degree-l-diversity constraint. A
KDLD graph protects two aspects of each user when an
attacker uses degree information to attack: 1) The probability
that an attacker can correctly reidentify this user is at most 1

k ;
2) The sensitive label of this user can at least be related with l
different values. Since each equivalent class contains at least
k nodes, when an attacker uses the degree to reidentify a
node, the probability he correctly reidentifies this user is at
most 1

k . Furthermore, since there are at least l distinct labels
in each equivalent class, a user’s sensitive label is related to
at least l values. Our goal is to protect each user’s privacy by
adding certain edges/nodes to transfer a social network
graph to a KDLD graph. We refer the added edges/nodes as
noise edges/nodes. To guarantee the correctness of informa-
tion, for any user who appears in the published graph, we
also preserve the sensitive label associated with this user’s
node. In order to keep the utility of the published graph,
when generating the KDLD graph, two key properties
should be preserved [24]:

. Low overhead: It is necessary to add as few noise
edges as possible to reduce the additional overhead
on the social infrastructure;

. Social distance: The noise edges/nodes added
should connect nodes that are close with respect to
the social distance.

Since each noise node connects with at least one noise
edge, “Low Overhead” also limits the number of noise
nodes that can be added. The social distance between two
nodes u, v is the shortest path length between u and v in the
original graph. The social distance between all node pairs of
a graph is measured by Average shortest path length
(APL). APL is a concept in network topology that is
defined as the average of distances between all pairs of
nodes. It is a measure of the efficiency of information or
mass transport on a network. Some queries like “the nearest
node for a group of nodes” are related to APL. The APL of
a graph G is

APLG ¼
2

NðN � 1Þ
X

8ni;nj2G
d
�
ni; nj

�
;

where, dðni; njÞ is the length of the shortest path between
nodes ni and nj, N is the number of nodes in the graph.

We design a two step algorithm to generate the KDLD
graph which tries to preserve the above two key properties.
In the first step, we compute a target degree for each node
so that it makes the original graph satisfy KDLD constraint
with the minimum sum of degree change. Clearly, smaller
degree change needs fewer noise edges to implement the
change. In the second step, we change each node’s degree
to its target degree by adding noise edges/nodes. We
utilize the noise nodes to make the change of APL as small
as possible. Our proposed two step algorithm considers
both the “Low Overhead” and the “Preserve Social
Distance” requirements.

Next, we first introduce two data structures we use in the
rest of this paper, and then give the formal description the
two steps in our algorithm. We borrow the concept of
“degree sequence” used in [18] and define a sensitive degree
sequence P as follows:

Definition 3. Given a graph G, its sensitive degree sequence is a
sequence of n triples: ½P ½1�; . . . ; P ½n�� where P ½1�:d � P ½2�:
d � � � � � P ½n�:d, P ½i� is a triple ðid; d; sÞ at position i in P ,
d is the degree, and s is the sensitive label associated with
node id.

We use lowercase pu to represent node u’s corresponding
triple in P . For example, the sensitive degree sequence of
the graph in Fig. 1b is [(2,3,80K), (3,3,80K), (1,2,100K),
(4,2,60K), (5,2,60K), (6,2,100K), (7,2,60K)]. In it, p2 ¼
ð2; 3; 80KÞ represents node 2 in the graph. For a node u,
we use u:d to denote its degree and u:s for its label. Now,
we can define KDLD model of a graph based on its sensitive
degree sequence:

Definition 4. KDLD sequence: A sensitive degree sequence P is a
KDLD sequence if P satisfies the following constraint: P can be
divided into a group of subsequences ½½P ½1�; . . . ; P ½i1��; ½P ½i1 þ
1�; . . . ; P ½i2��; ½P ½i2 þ 1�; . . . ; P ½i3��; . . . ; ½½P ½im þ 1�; . . . ; P ½j��
such that for any subsequence Px ¼ ½P ½ix�; . . . ; P ½ixþ1��, Px
satisfies three constraints: 1) All the elements in Px share the
same degree (P ½ix�:d ¼ P ½ix þ 1�:d ¼ � � � ¼ P ½ixþ1�:d); 2) Px
has size at least k (ixþ1 � ix þ 1 � k); 3) Px’s label set fP ½t�:
sjix � t � ixþ1g have at least l distinct values.
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1. If nodes have other labels (quasi identifiers) than the sensitive label,
the quasi identifiers of the nodes in each equivalent class will be adjusted to
be the same.



For example, the sensitive degree sequence of the Fig. 1c
is [(2,3,80K), (6,3,100K), (1,2,100K), (3,2,80K), (4,2,60K),
(5,2,60K), (7,2,60K)], it is a 2D2D sequence. For a KDLD
sequence P , each its subsequence ½P ½ix�; . . . ; P ½ixþ1�� forms a
same degree group cx. Then, from P , we can get same degree
groups: C ¼ fc1; c2; . . . ; cmg. For each ci 2 C, we use ci:d to
denote the degree of the corresponding group. It is obvious
that a graph GðV ;EÞ is a KDLD graph if and only if the
sensitive degree sequence of G is a KDLD sequence. The
benefit of using KDLD sequence is that it compactly
represents the conditions to make a graph be a KDLD graph.
The sensitive degree sequence in the above example is a
2D2D sequence, therefore Fig. 1c is a 2D2D graph. Based on
the above two data structures, we use two steps to solve the
following two subproblems, respectively:

. KDLD sequence generation: Given the sensitive
degree sequence P of graph G and two integers k
and l, compute a KDLD sequence Pnew which
contains the same set of nodes as P with minimum
LðP; PnewÞ ¼

P
8u jpu:d� pnewu :dj. This equation com-

putes the degree change by comparing the same
node u’s degree in these two sequences. The purpose
is to obtain a new KDLD sequence from G so that the
degree change of all the nodes in G is as small as
possible. Clearly, smaller degree change needs fewer
noise edges to implement the change.

. Graph construction: Given a graph GðV ;E; �; �Þ and
a sensitive degree sequence Pnew, construct a new
graph G0ðV 0; E0; �; �0Þ with V � V 0. The sensitive
degree sequence P 0 of G0 is a KDLD sequence and P 0

has all the elements in Pnew since G0 is constructed
from G by adding some noise nodes. Meanwhile,
jAPLG �APLG0 j is minimized.

Next, we introduce how to implement these two steps. To
be convenient, we summarize the commonly used symbols of
this paper in Table 1.

3 KDLD SEQUENCE GENERATION

To generate a KDLD sequence, the triples in P should be
divided into groups. All the corresponding nodes in the same

group shall be adjusted to have the same degree. We employ
two algorithms for this problem: Algorithm K-L-BASED and

Algorithm L-K-BASED.2 The algorithms tend to put the nodes
with similar degrees into the same group to reduce the
degree changes. Given the degree sequence P of the original

graph, Algorithm K-L-BASED selects the first k elements in P
as a group. We keep on merging the next element into the

current group until the l-diversity constraint is satisfied.
After a group satisfies k-degree and l-diversity constraints,

we calculate two costs:

. Cnew: the cost of creating a new group for the next
k elements (the total degree changes that make all
the nodes in this group have the same degree).

. Cmerge: the cost of merging the next element into the
current group and creating a new group for the next
k elements by skipping the next element.

If Cmerge is smaller, we merge the next element into the
current group and continue this comparison process. If Cnew
is smaller, we create a new group with the next k elements
and continue checking l-diversity constraints described

above. When the remaining elements are less than k or
contain less than l distinct sensitive labels, they are merged
into the last group. Since nodes are sorted by their degrees in

P , building groups using the above method helps to group
the nodes with similar degrees together. For example, if

using this algorithm to make P ½ð1; 5; s1Þ; ð2; 2; s1Þ; ð3; 2; s1Þ;
ð4; 1; s2Þ; ð5; 1; s2Þ; ð6; 1; s1Þ; . . .� satisfy 2D2D constraint ðk ¼
l ¼ 2Þ, we get Pnew ¼ ½ð1; 5; s1Þ, ð2; 5; s1Þ; ð4; 5; s2Þ; ð3; 2; s1Þ;
ð5; 2; s2Þ; ð6; 2; s1Þ; . . .�.

Different from Algorithm K-L-BASED which checks the k-
degree first, Algorithm L-K-BASED tries to satisfy the

l-diversity first. If we use t to represent the position number
of each element in P . Each time Algorithm L-K-BASED picks

l nongrouped P ½t�s in P that do not share any common labels
with the minimum

P
t. Minimum

P
t guarantees the

algorithm select l nodes with most similar degrees in the

nongrouped nodes. The algorithm then continues merging
P[t] with minimum t in the remaining elements until we get

k items. Then similar to Algorithm K-L-BASED, we use the
same cost function to determine if the next element should
be merged or not. For example, if using Algorithm L-K-

BASED to make P ½ð1; 5; s1Þ; ð2; 2; s1Þ; ð3; 2; s1Þ; ð4; 1; s2Þ; ð5; 1;
s2Þ; ð6; 1; s1Þ; . . .� satisfy 2D2D constraint ðk ¼ l ¼ 2Þ, we can

get Pnew ¼ ½ð1; 5; s1Þ; ð4; 5; s2Þ; ð2; 2; s1Þ, ð5; 2; s2Þ; ð3; 2; s1Þ; ð6;
2; s1Þ; . . .�. Ghinita et al. [12], [13] designed a heuristic

algorithm for 1D l-diversity models, which do not have
k-anonymous requirement. For distinct l-diversity with
k ¼ l, our LK-based algorithm follows the same logic as

their heuristic algorithm.
All the nodes in the same group will be adjusted to have

the same degree in the next graph construction step. We use

the mean degree of a group as its target degree. This target
degree is also used to estimate the cost in Algorithm K-L-

BASED and Algorithm L-K-BASED. The Algorithm K-L-BASED

runs in OðnÞ time since it only scans the degree sequence P
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TABLE 1
Meanings of Symbols Used

2. For the case that each node has some quasi-identifier labels, the
generalization cost on quasi-identifier labels in each group can be combined
into the cost function in the KDLD sequence generation algorithms.



once. The Algorithm L-K-BASED can also run in OðnÞ time if

we store a candidate list for each node.

4 GRAPH CONSTRUCTION

4.1 Algorithm Skeleton

After getting the new sensitive degree sequence Pnew, a new

graph G0 should be constructed. Suppose P 0 is the sensitive

degree sequence of G0, P 0o is the sensitive degree sequence of

G0 that only contains the nodes inG. Our graph construction

algorithm makes P 0o ¼¼ Pnew and P 0 as a KDLD sequence.

For example, if graph G’s degree sequence P ¼ ½ð1; 3; s1Þ;
ð2; 2; s2Þ; ð3; 1; s1Þ; ð4; 1; s1Þ; ð5; 1; s2Þ� and Pnew ¼ ½ð1; 3; s1Þ;
ð2; 3; s2Þ; ð3; 1; s1Þ; ð4; 1; s1Þ; ð5; 1; s2Þ�, then a new graph G0

can be constructed with degree sequence P 0 ¼ ½ð1; 3; s1; ð2; 3;
s2Þ; ð3; 1; s1Þ; ð4; 1; s1Þ; ð5; 1; s2Þ; ð6; 1; s1Þ].

Motivated by the observation example (Fig. 5), we

propose graph construction algorithms by making use of

noise nodes to preserve theAPL better. We use the following

algorithm to construct the published graph which preserves

the APL. The algorithm contains five steps:

. Step 1: Neighborhood_Edge_Editing()
We add or delete some edges if the corresponding

edge-editing operation follows the neighborhood rule

(The details can be found in Section 4.2). By doing

this, the sensitive degree sequence P of original

graph G is closer to Pnew in case APL is preserved;
. Step 2: Adding_Node_Decrease_Degree()

For any node whose degree is larger than its target

degree in Pnew, we decrease its degree to the target

degree by making using of noise nodes;
. Step 3: Adding_Node_Increase_Degree()

For any node whose degree is smaller than its target

degree in Pnew, we increase its degree to the target

degree by making using of noise nodes;

. Step 4: New_Node_Degree_Setting()
For any noise node, if its degree does not appear in

Pnew, we do some adjustment to make it has a degree

inPnew. Then, the noise nodes are added into the same

degree groups in Pnew;
. Step 5: New_Node_Label_Setting()

We assign sensitive labels to noise nodes to make sure

all the same degree groups still satisfy the requirement

of the distinct l-diversity. It is obvious that after Step 4

and Step 5, the sensitive degree sequence P 0 of the

published graph G0 is a KDLD sequence.

In Steps 2, 3, and 4, we carefully connect the noise nodes

into the graph to make the change ofAPL as less as possible.

Next, we introduced these steps in detail.

4.2 Step 1

We use Algorithm 1 (Table 2) to change some nodes’

degrees by adding/deleting edges first. In order to preserve

APL, we force each change to follow the neighborhood rule

described as follows:

. Case 1: Node u needs to increase its degree, v needs
to decrease its degree and u,v are direct neighbors. In
this case, we randomly select one direct neighbor w
of v which does not connect to u. Remove the edge
ðv; wÞ and add a new edge ðu;wÞ (See Fig. 3a). By
doing this, u’s degree is increased by 1 and v’s
degree is decreased by 1 while all the other nodes’
degrees remain unchanged. This operation changes
the distance between u;w from 2 to 1 and the
distance between v; w from 1 to 2. Therefore, only the
paths passing through u;w or v; w change their
lengths at most by 1;

. Case 2: Two nodes u, v are two hop neighbors and
they both need to increase their degree. If there does
not exist link ðu; vÞ, we add link ðu; vÞ (See Fig. 3b).
The distance between u; v is changed from 2 to 1.
Only the lengths of shortest paths passing though u,
and v change by 1;

. Case 3: Two nodes u and v that both need to decrease
their degrees are direct neighbors. If after removing
link ðu; vÞ, u and v are still two hop neighbors,
remove the link ðu; vÞ (See Fig. 3c). The distance
between u; v is changed from 1 to 2. So it only
changes the lengths of shortest paths passing
through u; v at most by 1.

A node’s degree could be either increased or decreased.
So the above policies consider all the cases for two nodes u
and vwhose degrees need to be changed. It is easy to see that
any edge-editing operation between these two nodes may
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TABLE 2
Algorithm 1: Neighborhood_Edge_Editing()

Fig. 3. Edge editing with neighborhood rule.



cause the lengths of shortest paths passing through u and v

change at least by 2 except the above three situations.

4.3 Step 2

For any node u whose degree is still larger than its target

degree after Step 1, we decrease its degree following the steps

below (Algorithm 2, as shown in Table 3):

. Create a new node n and connect uwith n, now u:d ¼
pu:dþ 1 and n:d ¼ 1.

. Setn’s target degree targetnew to a degree inP 0. Ifu:dþ
2� p0u:d is less than the minimum degree in P 0, set
targetnew as this minimum degree. Otherwise, set
targetnew as a degree in P 0 which is less than and
closest to u:dþ 2� p0u:d. We select u:dþ 2� p0u:d
because we change u’s degree through n. As a
consequence, n’s degree is changed to u:dþ 2� p0u:d.

. Randomly select an edge ðu; vÞ from the original
graph, delete this edge, then add a new edge ðn; vÞ. By
doing this, v only changes from u’s one hop neighbor
to its two hop neighbor. We repeat this random edge
modification process until n:d ¼ targetnew or u:d ¼
p0u:d. An example of decreasing node degree by

adding the noise node can be found in Fig. 4b. If n:d ¼
targetnew and u:d > p0u:d, goto the first step to create a
new noise node. If u:d ¼ p0u:d but n:d < targetnew,
node u’s degree has been successfully adjusted to
p0u:d. We finish the adjustment of node u, and leave
node n to noise hiding step. Since each time, we
reduce u’s degree by 1 to increase n’s degree by 1, and
the creation of n (described in previous step) adds
degree 1 to both u and n, u:dþ 2� p0u:d is n’s degree
when u reaches its target degree.

4.4 Step 3

For each vertex u in G which needs to increase its degree,
we use Algorithm 3 (Table 4) to make its degree reach the
target degree. We first check whether there exists a node v
within two hops of u, and v also needs to increase its degree
(In Step 2, some noise nodes are added, such v may exist.),
we connect n with v. Since v is within two hops of u,
connecting v with n will not change the distance between u
and v. Fig. 4a shows an example of this operation. After this
step, if n’s degree is bigger than the minimum degree in
Pnew but does not appear in Pnew, we recursively delete the
last created link until the degree of n equals to a degree in
Pnew. Otherwise, we leave n to Step 4 for processing and
continue adding noise to u if u:d < p0u:d. By doing this, u’s
degree is increased to its target degree.

4.5 Step 4

In this step, we make sure each noise node has a degree in
Pnew. By doing this, all the noise nodes are added into
existing same degree groups in Pnew. Furthermore, since we
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TABLE 3
Algorithm 2: Adding_Node_Decrease_Degree()

Fig. 4. Strategies to adding noise nodes.

TABLE 4
Algorithm 3: Adding_Node_Increase_Degree()



assume an attacker use the degree information of some
nodes to do the attack, if the noise nodes have degrees as the
same as some original nodes, an attacker cannot distinguish
them from the original nodes with the degree information.
So, we need to make all the noise nodes’ degrees to be some
degrees that already exist in Pnew. To keep the APL, during
the process, we only change connections in the noise nodes’
neighborhoods to minimize the distance changes.

The details of Step 4 is shown in Algorithm 4 (Table 5).
We first select pairs of noise nodes (which need to increase
their degrees) that each pair of nodes are within three hops
to each other and build a link for each pair. If two noise
nodes are within three hops, they are either connected to the
same node in the original graph or they are, respectively,
connected to two directly connected nodes in the original
graph. If the two noise nodes are connected to the same
original node, connecting them does not change any shortest
path between original nodes. If the two noise nodes are,
respectively, connected to two original nodes which are
direct neighbors, since connecting these two noise nodes
does not change the distance between the two original
nodes, the shortest path lengths between the nodes in the
original graph are not changed, too.

Then, for each noise node whose degree is an even
number, we select an even degree in Pnew (a degree in Pnew

which is an even number) that is close to and bigger than this
noise node’s current degree as its target degree. For example,
if a noise node’s degree is 8 and the degrees appear in Pnew

are {3, 4, 5, 6, 7, 9, 10, 12, 15, 16}, we set its target degree as 10.
We find all the nearest edges which do not directly connect
with current processing noise node. The “nearest” edge to a
noise node means the average distance of the two points
ðu; vÞ of an edge to this noise node disðu;noiseÞþdisðv;noiseÞ

2 is
minimum among all edges. We select one edge within the
nearest edge set randomly, remove the edge from the graph
and connect the endpoints of this edge to the current
processing noise node as shown in Fig. 4c. After that, the
degree of the noise node increases by 2, and meanwhile, all
the other vertices’ degrees remain unchanged. We repeat this
procedure until the noise node’s degree reaches the target
degree. For each noise node with an odd degree, we select an
odd target degree and conduct the same adjustment.

Since the two endpoints of the removed edge are both
near to the noise node, directly connecting them to the noise
node makes them stay in the neighborhood of the noise node.

Moreover, since the distance between the two endpoints
increases only by 1, the lengths of paths through these two
endpoints are increased only by 1 as well. When only even or
odd degree groups exist, it’s easy to change the KDLD
sequence generation algorithm to get a new sensitive degree
sequence that contains both even and odd degrees by
increasing some groups’ degrees by 1.

4.6 Step 5

The last step is to assign sensitive labels to noise nodes to
make all the same degree group still satisfy the requirement
of distinct l-diversity. Since in each same degree group, there
are already l distinct sensitive labels in it, it is obviously the
new added noise nodes can have any sensitive label. We use
the following way to sensitive label to a noise node n:
suppose u is the original node inGwhich n is created for. We
randomly find a label from the direct neighbors of u in the
original graphG. Since there is a node with this label directly
connected with u in the original graph, the noise node nwith
the same label connected with u can help preserve the
distances between this label and other labels in the graph.
The label distribution’s change after this setting is very small.
We show this in Section 7.4.3 of the experiment part. The
details of this step is shown in Algorithm 5 (Table 6).

4.7 Anonymization Utility Analysis

In Step 1, we add or delete some edges following the
“neighborhood rule.” To show the effectiveness of the noise
nodes adding strategies in Steps 2, 3, and 4, we analyze the
bound of the APL change when given the number of added
noise nodes in the average case.

Theorem 1. Suppose G0 is the graph generated after Step 1 with
N nodes, whose APL is APLG0

. If GM is the KDLD graph
generated by adding M noise nodes. Our algorithm guarantees
that the APL of GM , APLGM

is bounded in average case:

1� 4

N þ 1

� �M
APLG0

� APLGM

� 1þ 4

N

� �M
APLG0

þ 2

N � 4
:

Here, “in average case” means the expected change value.
We assume the adding/deleting of each edge changes the
same number of shortest paths. When adding 1,000 noise
nodes into a graph with 10,000 nodes, the upper bound of
APLGM

is around 1:49APLG0
and the lower bound of

APLGM
is around 0:67APLG0

. The detailed proof can be
found in Appendix I, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TKDE.2011.259.
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Algorithm 4: New_Node_Degree_Setting()
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Algorithm 5: New_Node_Label_Setting()



5 MORE COMPLEX L-DIVERSITY MODEL

Besides distinct l-diversity, Machanavajjhala et al. [20] also
proposed two other l-diversity models: entropy l-diversity
and recursive ðc; lÞ-diversity. Entropy l-diversity requests
tighter privacy constraints. However, it is too restrictive for
the practical purpose [20], [12], [13]. Recursive l-diversity has
a more relaxed condition. For any equivalent groupC (in our
case, an equivalent group is a same degree group), if there are
m sensitive labels appearing in C, C satisfies recursive ðc; lÞ-
diversity if f1 < cðfl þ flþ1 þ :::þ fmÞ. Where c and l are two
pregiven constants and fi is the number of occurrences of the
ith most frequent sensitive label inC. For example, in Fig. 2b,
there are eight nodes with degree 2 and the sensitive labels
associated with these nodes are 60K, 80K, and 100K,
respectively. 80K is the most frequent sensitive label which
appears four times. 60K is the second one which appears
three times and 100K is the third one which appears two
times. Thus, this same degree group satisfies 2-diversity with
c ¼ 1 (4 < 1ð2þ 3Þ) and 3-diversity with c ¼ 3 (4 < 3ð2Þ). In
this section, we show how to adapt our algorithm to make it
provide recursive ðc; lÞ-diversity instead of distinct l-diver-
sity protection for sensitive labels.

If the generated KDLD sequence Pnew satisfies recursive
ðc; lÞ-diversity and all the same degree groups also satisfy
ðc; lÞ-diversity after adding noise nodes, our algorithm
works for recursive ðc; lÞ-diversity. So, the key points are
to modify the KDLD sequence generation algorithm and
graph construction’ Step 5 (New_Node_Label_Setting()).

5.1 Step 5 for Recursive ðc; lÞ-Diversity

We use Algorithm 6 (Table 7) to assign sensitive labels to
noise nodes. For a same degree group, the basic procedure to
assign labels to new nodes added into this group is: 1) Assign
labels to new nodes follows the label distribution of the
original nodes in this group; 2) If the ðc; lÞ-diversity is not
satisfied, assign the least frequent label in current group to a
noise node who is assigned with the most frequent label (By
doing this, the most frequent label’s occurrence number is
decreased by 1 and the least frequent label’s occurrence

number is increased by 1). We repeatly do this until the new
group satisfies the recursive ðc; lÞ-diversity.

Theorem 2. For any equivalent group C which satisfies

recursive ðc; lÞ-diversity (i.e., f1 < cðfl þ flþ1 þ � � � þ fmÞ)
and f1þ1

f1ðm�lþ1Þ < c, after adding noise nodes into C with their

sensitive labels setted by Algorithm 6, the new group still

satisfies ðc; lÞ-diversity.

The detailed proof of this theorem can be found in

Appendix II, available in the online supplemental material.

We can generate the KDLD sequence where each same degree
group in it satisfies f1 < cðfl þ flþ1 þ � � � þ fmÞ and f1þ1

f1ðm�lþ1Þ <

c to achieve the recursive ðc; lÞ-diversity requirement.

5.2 KDLD Sequence Generation for Recursive
ðc; lÞ-Diversity

We design Algorithm 7 (Table 8) to generate the KDLD

sequence for recursive ðc; lÞ-diversity. The basic idea is to

put the nodes with similar degrees together to minimize the

cost LðP; PnewÞ ¼
P
8u jpu:d� pnewu :dj. We call the condition

that a same degree group C must satisfies the Safety

Grouping Condition, which requests: 1) C � k; 2) f1 <

cðfl þ flþ1 þ � � � þfmÞ; 3) f1þ1
f1ðm�lþ1Þ < c. Note when we use

the pure edge-editing method to construct the published

graph, the Safety Grouping Condition only contains the first

two constraints. Given the degree sequence P , Each time,

we create a new group C for P ½0� and remove P ½0� out of P .

We use d to record the degree of P ½0�. Then, we recursively
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TABLE 7
Algorithm 6: New_Node_Label_Setting()

TABLE 8
Algorithm 7: KDLD Sequence Generation Algorithm for

Recursive ðc; lÞ-Diversity



check the next element. If this element has degree d, we

directly add it into the current group C. Otherwise, we

check whether its label is a label that appears top L� 1

times in C. If not, we add this element into C. After adding

one element, we remove this element out of P and start

check from the head of P since the label appearance

numbers may be changed. We use this method to increase

the size of C until C satisfies the Safety Grouping

Condition. After getting a group, we copy it into Pnew and

start to construct the next group. If a group cannot reach the

Safety Grouping Condition after checking all left nodes in

P , we record the elements in this group into a set R. Finally,

for each element in R, we assign it to an existing group if

this group satisfies the Safety Grouping Condition after

adding this node.

6 DISCUSSION

For stronger graph protection models such as k-neighbor-
hood anonymity [32], it is also helpful to preserve APL by
carefully adding some nodes. A graph is k-neighborhood
anonymous if: for every node there exist at least other k�
1 nodes sharing isomorphic neighborhood graph. For
example, a 2-neighborhood anonymity graph of Fig. 5a
(shown in Fig. 5b) generated by edge editing can be
published. If an attacker uses a node’s neighborhood graph
to reidentify it, he always gets at least two candidates.
However, the distance between nodes 6 and 7 are changed
from 5 to 1 in Fig. 5b. If we simply add one node, we can
also generate a 2-neighborhood anonymous graph as
shown in Fig. 5c. In Fig. 5c, the shortest distances between
nodes are changed much smaller than Fig. 5b.

The basic procedure to generate a k-neighborhood
anonymous [32] graph is: 1) Sort all nodes by their
neighborhood graph size in descending order; 2) Recur-
sively adjust two nodes’ neighborhood graphs to be the
same until a k-neighborhood anonymity graph is generated.
When adjusting neighborhood graphs Gu and Gv with
jGuj > jGvj to be the same, new nodes should be introduced
into Gv. An unanonymized node with the smallest degree
has the highest priority to be added. The noise node adding
strategy should be considered in this step to improve the
utility of the published graph.

7 EXPERIMENTS

In this section, we test our algorithm on the distinct
l-diversity. We also conduct corresponding experiments for

recursive ðc; lÞ-diversity model. Both testing results show

the effectiveness of our algorithm. Interested readers can find

the testing results for recursive ðc; lÞ-diversity model in the

Appendix IV, available in the online supplemental material.

7.1 More Utilities

We first test how well the published graph represents the

original graph. In order to measure the changes on the

original graph, besides APL, we examine another two

utilities: Average Change of Sensitive Label Path Length

(ACSPL) and Remaining ratio of top influential users

(RRTI).

1. ACSPL: In order to measure the connections
between any two sensitive labels (including the same
label), we define average path length between any
two labels l1 and l2 as:

APLG;ðl1;l2Þ ¼
P
8ni:s¼l1;nj:s¼l2 dðni; njÞP

8ni:s¼l1;nj:s¼l2 1
:

The average change of average sensitive value

path length is defined as:

ACSPLG;G0 ¼
P
8l1;l2 AbsðAPLG;ðl1;l2Þ �APLG0;ðl1;l2ÞÞ

ðM2 Þ þM
;

where M is the number of unique sensitive attribute

labels, ðM2 Þ is the number of two combinations of these

M values. ðM2 Þ þM computes the number of all

possible two combinations of the sensitive label set.
2. RRTI: One important data mining task on a graph

are to find the top influential users (experts) in it.
We test the remain ratio of top influential users to
show how the published graph preserves this utility.
Suppose the set of top 20 percent influential users in
G is INFG and the corresponding one in G0 is
INFG0 , the remaining ratio of the top jINFGj users is
computed as:

RRTI ¼ jINFG \ INFG
0 j

jINFGj
:

The largerRRTI is, the better the published graph

preserves the information in the original graph. We

use the PageRank algorithm [23] to compute the

users’ influential values.
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7.2 Data Sets

In this experiment, we exam our algorithm on three real data
sets: Arnet Data Set (6,000 nodes and 37,848 edges), Cora
data set (2,708 nodes and 5,429 edges), and DBLP data set
(6,000 nodes and 29,843 edges). Details of these data sets can
be found in Appendix III, available in the online supple-
mental material.

7.3 Results

To demonstrate the effectiveness of our graph construction
algorithm, we compare our work with two pure edge-editing
graph construction algorithms: adding edges [18], simulta-
neous swap [18]. We test the KD3D model for Cora and
DBLP data sets, and KD5D model for Arnet data set, we
choose a larger l for Arnet data set since it contains more
distinct sensitive labels. We generate the KDLD graph for
each data set using the K-L-BASED sensitive degree sequence
generation algorithm. Note here we use different graph
construction algorithms to generate anonymized graphs for
the same KDLD sequence.

Figs. 6a, 6b, and 6c are APL results of the three data sets,
respectively, in terms of changing k values using different
graph construction algorithms. From the results we can see
that for all the three data sets, our noise node adding
algorithm performs much better than two edge-editing
algorithms. This is because our methods do not connect
nodes far away. As a result, our method keeps the distance
property well.

We show the ACSPL results in Figs. 7a, 7b, and 7c. The
less the ACSPL value is, the better a graph construction
algorithm works. From the figures, we can observe that the
curve of our noise node adding algorithm is quite low
compared with adding edge method and simultaneous swap

method. Our algorithm helps to preserve the distances

between labels.
We show the RRTI results in Figs. 8a, 8b, and 8c. The

larger the RRTI value is, the better a graph construction

algorithm works. Except simultaneous swap has competitive

performance as our algorithm at two points (k ¼ 30 and

k ¼ 35) of Cora, for all the other cases, our algorithm also

works the best.
To summarize, after comparing APL, ACSPL, and

RRTI values, our adding noise node method performs

much better than the two edge-editing algorithms. Making

use of noise nodes to construct a graph helps to keep the

utilities of the published graph.
We also test the APL, ACSPL, and RRTI results of the

three data sets with different k based on L-K-BASED

sensitive degree sequence generation algorithm. Very

similar results as the Algorithm K-L-BASED are observed.

Due to the page limitation, we do not show the test results

here. When the k value becomes large compared with l

value, the results of K-L-BASED algorithm and L-K-BASED

algorithm become nearly the same. In our testing, the sum

of degree change’s difference between L-K-BASED and K-L-

BASED sensitive degree sequence generation algorithm is

within 5 percent. In our following experiments, we only

show the results of our algorithm with the K-L-BASED

sensitive degree sequence generation algorithm.
Since Cora and DBLP data sets do not contain the enough

number of sensitive labels, in order to see the effect of l, we

test 15DlDmodels of Arnet Data Set. The results are shown in

Fig. 9. Similar results can be observed as the changing k case,

our algorithm performs much better than the two edge-

editing algorithms.
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7.4 More Experiments

Besides the quality of the published graph, we also test

several other aspects of our algorithm.

7.4.1 Bounds of APL Change

In order to test the bounds derived in Section 4.7, we

compute the bounds for these three data sets and compare

the true APLs with them. The results are shown in Fig. 10.

7.4.2 Percentage of Noise Nodes

Fig. 11a shows the percentage of noise nodes added by our

algorithm with different ks. In all cases, our algorithm add

less than 7 percent noise nodes. Our method only put a

small “burden” to achieve a much better effect comparing

with pure edge-editing algorithms.

7.4.3 Change of Label Distribution

Fig. 11b shows the percentage of average label distribu-

tion change. The percentage of average label distribution

change is calculated as:

PM
i¼1

jratioli ;G�ratioli ;G0 j
ratioli ;G

M
� 100%;

where M stands for the number of unique node labels,

ratioli;G stands for label li’s percentage in G, and ratioli;G0

stands for its percentage in G0. From the result, we can see

although some noise nodes are added, the change of label

distribution is very small. The maximum change ratio is

11 percent and in most cases, the change ratio is less than

6 percent. This change includes the labels that only appear a

small number of times in the original graph. A small change

to this kind of labels will cause a large distribution change.

7.4.4 Algorithm Efficiency

We record the running time of our algorithm for different k

in Fig. 11c.3 From the result we can see our algorithm is very

efficient, the largest running time is less than 6,000 ms.
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Fig. 8. Remaining ratio of top influential users for different k.

Fig. 9. Utilities of Arnet Data Set for different l.

Fig. 10. APL and the estimated bounds.

3. We test the running time of noise node adding algorithms on a PC
computer running with the Microsoft Windows Vista operating system,
which has Intel Core 2 Duo CPU with 2.53 GHz, 4.0 GB main memory.



7.4.5 New Added Nodes Hiding

Since each noise node n has a degree included in Pnew,
there at least exists k original node with the same degree as
n. An attacker cannot determine whether a node is a noise
node based on the degree information. For any noise node
n, our algorithm always connects n with some nodes that
are near to the node when n is created. As a result, all n’s
neighbors are from a small region of the graph. This is the
best way to guarantee that any noise node’s connection
satisfies the basic characteristic [25], [28] of social network.
That is, for any node, most neighbors of it should be close
to each other.

In this section, we show the noise nodes are well mixed
with original nodes by testing the ability that an attacker
can filter out the noise nodes.

Test 1. In this testing, we make a strong assumption that
the attacker knows the accurate characteristics of noise nodes

and uses these characteristics to filter noise nodes out. We
want to test whether the characteristics of noise nodes are
special comparing to original nodes.

We first suppose the attacker already knows the degrees

of all the noise nodes and uses this information to filter all

the nodes with these degrees out. Table 9(1) shows the

average percentage of real noise nodes in the filtered out

nodes. From the result, we can see that our algorithm hides

the noise nodes well, there exists a large portion of original

nodes have the same degrees as noise nodes.

Clustering coefficient (CC) of a vertex is an important

value [25], [28] to represent the characteristic of its

neighborhood graph. It is defined as the actual number of

edges between the vertex’s directed neighbors divides the

max possible number of edges between these directed

neighbors. We suppose an attacker knows the CC values of
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all the noise nodes and do the filtering. The result is shown

in Table 9(2), similar results as the degree filtering method

can be observed. A large portion of original nodes have the

same CCs as noise nodes. The result shows the connection

of noise nodes are the same as most original nodes.
Test 2. There are some works [22], [9] to detect abnormal

structures in graph databases. For each degree that contains

noise nodes, we extract all the labeled neighborhood

graphs of the nodes with this degree in the published

graph. We use the tool in [9] to detect abnormal structures

in the graph database formed by these neighborhood

graphs. Eberle and Holder [9] designed graph-based

approaches to uncovering anomalies in labeled graphs

where the anomalies consist of unexpected entity/relation-

ship deviations that resemble the nonanomalous behavior.

They make use of the minimum description length

principle and probabilistic approaches in their tool. In our

experiment, the interesting result is, for all the cases, either

no abnormal structure is found or the abnormal structures

found out are all in the neighborhood graphs of normal

nodes. The result shows the neighborhood graph of the

noise nodes do not have any special characteristics for

noise filtering purpose.
Test 3. In this testing, we enhance an attacker’s back-

ground knowledge by the number of noise nodes in each
same degree group. An attacker originally has the knowl-
edge of some node’s degrees. From our algorithm, he also
knows we change the degrees of original nodes as less as
possible. So, in the very worst case, for a same degree group
C with degree d, the attacker may know the number of noise
nodes in it. For a same degree group C, if there are m noise
nodes in C, we follow the distance-based outliers detection
[14], [16] method to extract m nodes out based on certain
characteristics of each node. Distance-based outliers detec-
tion is a general method to detect outliers in a set. We divide
C into two sets C1 and C2 with jC2j ¼ m where the nodes in
C2 are detected as outliers. Suppose in the extracted nodes,
there are r nodes which are real noise nodes, we compute the
correct filtering ratio as ratio ¼ r

m� 100%. We compute the
average correct filtering ratio of all same degree groups
which contain at least one noise node. We conduct two
experiments:

. Filtering 1: For a node n in C, n is represented by its
certain connection characteristic. We use two con-
nection characteristics: CC and the influential value
to do the filtering.

. Filtering 2: For a node n in C with degree d, n is
represented by a sorted vector with size d which
contains certain connection characteristic of n’s
neighbors. We use three connection characteristics:
degree, CC, and the influential value to do the
filtering.

Tables 9(3) and 9(4) show the average correct filtering
ratio of Filtering 1. From the result, we can see the correct
filtering ratios are very low. Even an attacker knows the
number of noise nodes we added for each degree, it is still
impossible for them to find these noise nodes. Tables 9(5),
9(6), and 9(7) show the average correct filtering ratio of
Filtering 2. Similar results can also be observed. Most of the

detected outliers are original nodes. The neighbors of noise
nodes do not exhibit special connection characteristics either.
The results show the noise nodes added by our algorithm
have no special graph characteristics. They are well mixed
with the original nodes in the graph.

From the experiments, we can see comparing with the
current edge-editing-based algorithms, our noise node
adding algorithm can generate a privacy preserving graph
efficiently, which provides better utilities.

8 RELATED WORK

Simply removing the identifiers in social networks does
not guarantee privacy. The unique patterns, such as node
degree or subgraph to special nodes, can be used to
reidentify the nodes [15]. The attack that uses certain
background knowledge to reidentify the nodes/links in the
published graph is called “passive attack.” There are two
models proposed to publish a privacy preserved graph:
edge-editing-based model [18], [32], [34], [6], [29] and
clustering-based model [15], [30], [4], [7], [3]. The edge-
editing-based model is to add or delete edges to make the
graph satisfy certain properties according to the privacy
requirements. Clustering-based model is to cluster “simi-
lar” nodes together to form super nodes. Each super node
represents several nodes which are also called a “cluster.”
Then, the links between nodes are represented as the edges
between super nodes which is called “super edges.” Each
super edge may represent more than one edge in the
original graph. We call the graph that only contains super
nodes and super edges as a clustered graph.

Most edge-editing-based graph protection models im-
plement k-anonymity [26] of nodes on different background
knowledge of the attacker. Liu and Terzi [18] defined and
implemented k-degree-anonymous model on network
structure, that is for published network, for any node, there
exists at least other k� 1 nodes have the same degree as this
node. Zhou and Pei [32] considered k-neighborhood
anonymous model: for every node, there exist at least other
k� 1 nodes sharing isomorphic neighborhoods. In paper
[33], the k-neighborhood anonymity model is extended to k-
neighborhood-l-diversity model to protect the sensitive
node label. Zou et al. [34] proposed a k-Automorphism
protection model: A graph is k-Automorphism if and only if
for every node there exist at least k� 1 other nodes do not
have any structure difference with it. Cheng et al. [6]
designed a k-isomorphism model to protect both nodes and
links: a graph is k-isomorphism if this graph consists k
disjoint isomorphic subgraphs. The sensitive attributes of
nodes are protected by anatomy model [27] in a k-
isomorphism graph. Ying and Wu [29] proposed a protec-
tion model which randomly changes the edges in the graph.
They studied how random deleting and swapping edges
change graph properties and proposed an eigenvalues
oriented random graph change algorithm. All the edge-
editing-based models prefers to generate a published graph
with as less edge change as possible. Our model is also
based on edge-editing method. The main difference of our
work with other previous works is that besides as less
change as possible, we guarantee the published graph
preserves another important utility, the average path length
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APL, which reflects the distortion of node relationships on
the original graph.

For clustering-based models, since a clustered graph
only contains super nodes and super edges, by making
each cluster’s size at least k, the probability to reidentify a
user can be bounded to be at most 1

k . Hay et al. [15]
proposed a heuristic clustering algorithm to prevent
privacy leakage using vertex refinement, subgraph, and
hub-print attacks. Campan and Truta [4] discussed how to
implement clustering when considering the lost of both
node labels and structure information. Zheleva and Getoor
[30] developed a clustering method to prevent the sensitive
link leakage. Cormode et al. [7], [3] introduced (k,l)-
clusterings for bipartite graphs and interaction graphs,
respectively. Campan et al., [5] implemented a p-sensitive-
k-anonymity clustering model which requests each cluster
satisfy distinct l-diversity. Since a clustered graph only
contains super nodes and super edges, to mine a clustered
graph, people samples a group of graphs which are
consisted with this clustered graph. Then, the mining task
can be finished by mining each sampled graph and
computing the average results. Since a user should do
the sampling, the utility of the published graph does not
have any guarantee and this user could never know how
many samplings can guarantee to get a “well enough”
result. Comparing with a clustering-based model, the
benefit of our model is that we can guarantee to preserve
some utilities of the published graph.

Besides the “passive attack,” there’s another type of
attack on social networks, which is called “active attack.”
“Active attack” is to actively embed special subgraphs into
a social network when this social network is collecting data.
An attacker can attack the users who are connected with the
embedded subgraphs by reidentifying these special sub-
graphs in the published graph. Backstrom et al. [1]
described active attacks based on randomness analysis
and demonstrated that an attacker may plant some
constructed substructures associated with the target enti-
ties. One method to prevent the active attack is to recognize
the fake nodes added by attackers and remove them before
publishing the data. Shrivastava et al. [25] and Ying et al.
[28] focused on a special active attack named Random Link
Attack. Shrivastava et al. [25] proposed an algorithm that
can identify fake nodes based on the triangle probability
difference between normal nodes and fake nodes. Ying et al.
[28] proposed another method, which uses spectrum
analysis to find the fake nodes. To publish a graph that is
potentially changed by Random Link Attack, the publisher
can use a two step mechanism. First, the graph is filtered by
the methods introduced by Backstrom et al. [1] or
Shrivastava et al. [25]. Then, he can generate the published
graph using our model from the filtered graph.

There are also two other works which focus on the edge
weight protection in weighted graphs. Liu et al. [19] treated
weights on the edges as sensitive labels and proposed a
method to preserve shortest paths between most pairs of
nodes in the graph. Das et al. [8] proposed a Linear
Programming-based method to protect the edge weights
while preserving the path of shortest paths. These two works
focused on the protection of edge weights instead of nodes,
which are different with our work.

Some works studied other attacks besides the “passive
attack” and “active attack.” Zheleva [31] analyzed the ability
of an attacker to learn the unpublished attributes of users in
an online social network when he uses the published
attributes and relationships between users to do the data
mining. Arvind [21] studied the ability of an attacker to
reidentify nodes in an anonymized graphGa when he knows
a different graph Gaux whose membership partially overlaps
with Ga. The attacker knows the mapping of some “seed
nodes” betweenGa andGaux. Narayanan and Shmatikov [21]
showed from these “seed nodes,” a large portion of other
nodes can be reidentified. These two attacks are different
with the “passive attack” which we target on in this paper.

9 CONCLUSION

In this paper, we propose a k-degree-l-diversity model for
privacy preserving social network data publishing. We
implement both distinct l-diversity and recursive
ðc; lÞ-diversity. In order to achieve the requirement of
k-degree-l-diversity, we design a noise node adding
algorithm to construct a new graph from the original graph
with the constraint of introducing fewer distortions to the
original graph. We give a rigorous analysis of the
theoretical bounds on the number of noise nodes added
and their impacts on an important graph property. Our
extensive experimental results demonstrate that the noise
node adding algorithms can achieve a better result than the
previous work using edge editing only. It is an interesting
direction to study clever algorithms which can reduce the
number of noise nodes if the noise nodes contribute to both
anonymization and diversity. Another interesting direction
is to consider how to implement this protection model in a
distributed environment, where different publishers pub-
lish their data independently and their data are over-
lapping. In a distributed environment, although the data
published by each publisher satisfy certain privacy require-
ments, an attacker can still break user’s privacy by
combining the data published by different publishers
together [11]. Protocols should be designed to help these
publishers publish a unified data together to guarantee the
privacy.

ACKNOWLEDGMENTS

This work is supported in part by Hong Kong RGC grants
N_HKUST612/09, National Grand Fundamental Research
973 Program of China under Grant 2012CB316200, and
NSFC 619308, US National Science Foundation (NSF)
through grants CNS-1115234, IIS-0914934, and CNS-
0747247. The DBLP data set is based on the Proximity
DBLP database prepared by the Knowledge Discovery
Laboratory, University of Massachusetts Amherst.

REFERENCES

[1] L. Backstrom, C. Dwork, and J.M. Kleinberg, “Wherefore Art Thou
r3579x?: Anonymized Social Networks, Hidden Patterns, and
Structural Steganography,” Proc. Int’l Conf. World Wide Web
(WWW), pp. 181-190, 2007.

[2] A.-L. Barabási and R. Albert, “Emergence of Scaling in Random
Networks,” Science, vol. 286, pp. 509-512, 1999.

646 IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. 25, NO. 3, MARCH 2013



[3] S. Bhagat, G. Cormode, B. Krishnamurthy, and D. Srivastava,
“Class-Based Graph Anonymization for Social Network Data,”
Proc. VLDB Endowment, vol. 2, pp. 766-777, 2009.

[4] A. Campan and T.M. Truta, “A Clustering Approach for Data and
Structural Anonymity in Social Networks,” Proc. Second ACM
SIGKDD Int’l Workshop Privacy, Security, and Trust in KDD
(PinKDD ’08), 2008.

[5] A. Campan, T.M. Truta, and N. Cooper, “P-Sensitive K-Anonym-
ity with Generalization Constraints,” Trans. Data Privacy, vol. 2,
pp. 65-89, 2010.

[6] J. Cheng, A.W.-c. Fu, and J. Liu, “K-Isomorphism: Privacy
Preserving Network Publication against Structural Attacks,” Proc.
Int’l Conf. Management of Data, pp. 459-470, 2010.

[7] G. Cormode, D. Srivastava, T. Yu, and Q. Zhang, “Anonymizing
Bipartite Graph Data Using Safe Groupings,” Proc. VLDB
Endowment, vol. 1, pp. 833-844, 2008.

[8] S. Das, O. Egecioglu, and A.E. Abbadi, “Privacy Preserving in
Weighted Social Network,” Proc. Int’l Conf. Data Eng. (ICDE ’10),
pp. 904-907, 2010.

[9] W. Eberle and L. Holder, “Discovering Structural Anomalies in
Graph-Based Data,” Proc. IEEE Seventh Int’l Conf. Data Mining
Workshops (ICDM ’07), pp. 393-398, 2007.

[10] K.B. Frikken and P. Golle, “Private Social Network Analysis:
How to Assemble Pieces of a Graph Privately,” Proc. Fifth
ACM Workshop Privacy in Electronic Soc. (WPES ’06), pp. 89-98,
2006.

[11] S.R. Ganta, S. Kasiviswanathan, and A. Smith, “Composition
Attacks and Auxiliary Information in Data Privacy,” Proc. ACM
SIGKDD Int’l Conf. Knowledge Discovery and Data Mining, pp. 265-
273, 2008.

[12] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis, “Fast Data
Anonymization with Low Information Loss,” Proc. 33rd Int’l
Conf. Very Large Data Bases (VLDB ’07), pp. 758-769, 2007.

[13] G. Ghinita, P. Karras, P. Kalnis, and N. Mamoulis, “A Framework
for Efficient Data Anonymization Under Privacy and Accuracy
Constraints,” ACM Trans. Database Systems, vol. 34, pp. 9:1-9:47,
July 2009.

[14] J. Han, Data Mining: Concepts and Techniques. Morgan Kaufmann
Publishers, Inc., 2005.

[15] M. Hay, G. Miklau, D. Jensen, D. Towsley, and P. Weis,
“Resisting Structural Re-Identification in Anonymized Social
Networks,” Proc. VLDB Endowment, vol. 1, pp. 102-114, 2008.

[16] E.M. Knorr, R.T. Ng, and V. Tucakov, “Distance-Based Outliers:
Algorithms and Applications,” The VLDB J., vol. 8, pp. 237-253,
Feb. 2000.

[17] N. Li and T. Li, “T-Closeness: Privacy Beyond K-Anonymity and
L-Diversity,” Proc. IEEE 23rd Int’l Conf. Data Eng. (ICDE ’07),
pp. 106-115, 2007.

[18] K. Liu and E. Terzi, “Towards Identity Anonymization on
Graphs,” SIGMOD ’08: Proc. ACM SIGMOD Int’l Conf. Manage-
ment of Data, pp. 93-106, 2008.

[19] L. Liu, J. Wang, J. Liu, and J. Zhang, “Privacy Preserving in Social
Networks against Sensitive Edge Disclosure,” Technical Report
CMIDA-HiPSCCS 006-08, 2008.

[20] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubrama-
niam, “L-Diversity: Privacy Beyond K-Anonymity,” ACM Trans.
Knowledge Discovery Data, vol. 1, article 3, Mar. 2007.

[21] A. Narayanan and V. Shmatikov, “De-Anonymizing Social Net-
works,” Proc. IEEE 30th Symp. Security and Privacy, pp. 173-187,
2009.

[22] C.C. Noble and D.J. Cook, “Graph-Based Anomaly Detection,”
Proc. Ninth ACM SIGKDD Int’l Conf. Knowledge Discovery and Data
Mining (KDD ’03), pp. 631-636, 2003.

[23] L. Page, S. Brin, R. Motwani, and T. Winograd, “The Pagerank
Citation Ranking: Bringing Order to the Web,” Proc. World Wide
Web Conf. Series, 1998.

[24] K.P. Puttaswamy, A. Sala, and B.Y. Zhao, “Starclique: Guarantee-
ing User Privacy in Social Networks Against Intersection
Attacks,” Proc. Fifth Int’l Conf. Emerging Networking Experiments
and Technologies (CoNEXT ’09), pp. 157-168, 2009.

[25] N. Shrivastava, A. Majumder, and R. Rastogi, “Mining (Social)
Network Graphs to Detect Random Link Attacks,” Proc. IEEE 24th
Int’l Conf. Data Eng. (ICDE ’08), pp. 486-495, 2008.

[26] L. Sweeney, “K-Anonymity: A Model for Protecting Privacy,” Int’l
J. Uncertain. Fuzziness Knowledge-Based Systems, vol. 10, pp. 557-
570, 2002.

[27] X. Xiao and Y. Tao, “Anatomy: Simple and Effective Privacy
Preservation,” Proc. 32nd Int’l Conf. Very Large Databases (VLDB
’06), pp. 139-150, 2006.

[28] X. Ying, X. Wu, and D. Barbara, “Spectrum Based Fraud Detection
in Social Networks,” Proc. IEEE 27th Int’l Conf. Very Large
Databases (VLDB ’11), 2011.

[29] X. Ying and X. Wu, “Randomizing Social Networks: A Spectrum
Preserving Approach,” Proc. Eighth SIAM Conf. Data Mining (SDM
’08), 2008.

[30] E. Zheleva and L. Getoor, “Preserving the Privacy of Sensitive
Relationships in Graph Data,” Proc. First SIGKDD Int’l Workshop
Privacy, Security, and Trust in KDD (PinKDD ’07), pp. 153-171,
2007.

[31] E. Zheleva and L. Getoor, “To Join or Not to Join: The Illusion of
Privacy in Social Networks with Mixed Public and Private User
Profiles,” Proc. 18th Int’l Conf. World Wide Web (WWW ’09),
pp. 531-540, 2009.

[32] B. Zhou and J. Pei, “Preserving Privacy in Social Networks
Against Neighborhood Attacks,” Proc. IEEE 24th Int’l Conf. Data
Eng. (ICDE ’08), pp. 506-515, 2008.

[33] B. Zhou and J. Pei, “The K-Anonymity and L-Diversity
Approaches for Privacy Preservation in Social Networks against
Neighborhood Attacks,” Knowledge and Information Systems,
vol. 28, pp. 47-77, 2011.

[34] L. Zou, L. Chen, and M.T. Özsu, “K-Automorphism: A General
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