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Abstract—There are numerous applications where we wish to discover unexpected activities in a sequence of time-stamped
observation data—for instance, we may want to detect inexplicable events in transactions at a web site or in video of an airport
tarmac. In this paper, we start with a known set A of activities (both innocuous and dangerous) that we wish to monitor. However,
in addition, we wish to identify “unexplained” subsequences in an observation sequence that are poorly explained (e.g., because
they may contain occurrences of activities that have never been seen or anticipated before, i.e. they are not in A). We formally
define the probability that a sequence of observations is unexplained (totally or partially ) w.r.t. A. We develop efficient algorithms
to identify the top-k Totally and Partially Unexplained Sequences w.r.t. A. These algorithms leverage theorems that enable us
to speed up the search for totally/partially unexplained sequences. We describe experiments using real-world video and cyber
security datasets showing that our approach works well in practice in terms of both running time and accuracy.

Index Terms—I.2.4 Knowledge Representation Formalisms and Methods < I.2 Artificial Intelligence < I Computing Method-
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1 INTRODUCTION

Identifying unexpected activities is an important problem in

a wide variety of applications such as video surveillance,

cyber security, fault detection in safety critical systems, and

fraud detection.

For instance, airport baggage areas are continuously

monitored for suspicious activities by video surveillance.

In crime-ridden neighborhoods, police often monitor streets

and parking lots using video surveillance. In Israel, high-

ways are monitored for suspicious activities by a central

authority. However, all these applications search for known
activities—activities that have been identified in advance

as being either innocuous or dangerous. For instance, in

the highway application, security officers may look both

for normal behavior (e.g. driving along the highway in

a certain speed range unless traffic is slow) as well as

“suspicious” behavior (e.g. stopping the car near a bridge,

taking a package out and leaving it on the side of the road

before driving away).

In cyber security, intrusion detection can monitor net-

work traffic for suspicious behavior and trigger security
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alerts. Alert correlation methods aggregate alerts into multi-

step attack scenarios. However, both techniques rely on

models encoding a priori knowledge of either normal or

malicious behavior. They cannot deal with events such as

“zero day” attacks that have never been seen before. In

practice, all these methods are incapable of quantifying

how well available models explain a sequence of events

observed in an observation stream.

Figure 1 shows how our framework would work in

practice. We start with a set of activity models A for both

“good” and “bad” activities. Good activities are activities

that are considered appropriate (e.g., certain permitted

behaviors in an airport secure baggage zone) while bad

activities are ones known to be inappropriate (e.g., a

baggage handler opening a suitcase, taking items out, and

putting them in a different bag). Techniques already exist to

find occurrences of activities in time-stamped observation

data (e.g., a video, a sequence of transactions at a website,

etc.) with each occurrence having an associated probability.

 
 

Fig. 1: Overall working of unexplained sequences
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In this paper, our goal is to find an unexplained sequence
detector, i.e. to identify subsequences of the observation

data, called unexplained sequences, that known models are

not able to “explain” with a certain confidence. In other

words, what is happening in unexplained sequences is not

well captured by the available activity models in A. Once

such subsequences have been identified, they can be further

analyzed, e.g., to learn new activity models from them. Or,

as shown in Figure 1, each unexplained sequence can be

shown to a domain expert (e.g., airport security or cyber

security expert) who can then add these observed sequences

or generalizations thereof to the currently known list of

good or bad activities.

Unexplained sequences allow an application to identify

activities never seen or imagined before by experts, and

to add them to an increasing body of such knowledge.

For instance, a new type of terrorist attack at an airport

or a zero-day attack on a computer system, may involve

sequences of actions (observations) not seen before—and

hence not captured by past activity models (i.e., those in

A). In this paper, we primarily focus on the unexplained

sequence detector component of Figure 1.

We achieve this via a possible-worlds based model and

define the probability that a sequence of observations is

totally (or partially) unexplained. Users can then look for

all observation sequences that are totally (or partially) un-

explained with a probability exceeding a threshold that they

specify. We show important properties of our mathematical

model that can be leveraged to speed up the search for

unexplained sequences. We define algorithms to find top-k
totally and partially unexplained sequences. We develop a

prototype implementation and report on experiments using

two video data sets and a cyber security dataset showing

that the algorithms work well in practice, both from an

efficiency perspective and an accuracy perspective.

The paper starts (Section 2) with an overview of related

work. Section 3 provides basic definitions of stochastic

activities slightly extending [1]. Section 4 defines the prob-

ability that a sequence is totally (or partially) unexplained.

We also define the problem of finding the top-k (totally

or partially) unexplained sequences and classes. Section 5

derives theorems that enable fast search for totally and par-

tially unexplained sequences. Section 6 presents algorithms

for solving the problems introduced in Section 4. Section 7

describes our experiments.

2 RELATED WORK

We are not aware of domain-independent prior work on

discovering unexplained sequences. However, specific work

in the domains of video and cyber-security have focused on

anomalous activity detection.

2.1 Video Analysis
A Priori Definitions. Several researchers have studied

how to search for specifically defined patterns of nor-

mal/abnormal activities [2]. [3] studies how HMMs can

be used to recognize complex activites, while [4] and [5]

use coupled HMMs. [6] uses Dynamic Bayesian Networks

(DBNs) to capture causal relationships between observa-

tions and hidden states. [1] developed a stochastic automa-

ton based language to detect activities in video, while [7]

presented an HMM-based algorithm. In contrast, this paper
starts with a set A of activity models (corresponding to
innocuous/dangerous activities) and finds observation se-
quences that are not sufficiently explained by the models in
A. Such unexplained sequences reflect activity occurrences

that differ from the application’s expectations.

Learning and then detecting abnormality. Several re-

searchers first learn normal activity models and then detect

abnormal/unusual events. [8] suggests a semi-supervised

approach to detect abnormal events that are rare, unex-

pected, and relevant. We do not require “unexplained”

events to either be rare or relevant. [9] uses HMMs to detect

rare events, while [10] defines an anomaly as an atypical be-

havior pattern that is not represented by sufficient samples

in a training dataset and satisfies an abnormal pattern. [11]

defines abnormality as unseen or rarely occurring events—

an initial video is used to learn normal behaviors. [12]

shows how to detect users with abnormal activities from

sensors attached to human bodies. An abnormal activity

is defined as “an event that occurs rarely and has not

been expected in advance”. The same notion of abnormal

activity is considered in [13] and [14]. [15] learns patterns

of activities over time in an unsupervised way. [16] de-

tects individual anomalies in crowd scenes—an anomaly is

defined as a rare or infrequent behavior compared to all

other behaviors. Common activities are accepted as normal

and infrequent activity patterns are flagged as abnormal.

All these approaches first learn normal activity models and

then detect abnormal/unusual events. These papers differ

from ours as they consider rare events to be abnormal. In

contrast, we consider activities to be unexplained even if

they are not rare and the available models are not able to

capture them. For example, if a new way to break into cars

has occurred many times (and we do not have a model for

it), then we want to flag sequences where those activities

occur as “unexplained” even if they are not rare. In addition,

if a model exists for a rare activity, we would flag it as

“explained”, while many of these frameworks would not.

Similarity-based abnormality. [17] proposes an unsuper-

vised technique in which no explicit models of normal

activities are built. Each event in the video is compared

with all other observed events to determine how many

similar events exist. Unusual events are events for which

there are no similar events in the video. Hence, this work

also considers unusual activity as a rare event and a

large number of observations is required to verify if an

activity is unusual. [18] uses a similar approach: a scene

is considered anomalous when the maximum similarity

between the scene and all previously viewed scenes is

below a threshold. In [19], frequently occurring patterns are

normal and patterns that are dissimilar from most patterns

are anomalous. [20] learns trajectory prototypes and de-

tects anomalous behaviors when visual trajectories deviate

from the learned representations of typical behaviors. An
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unsupervised approach, where an abnormal trajectory refers

to something that has never (or rarely) seen, has been

proposed in [21]. A normal trajectory is intended to be one

similar enough to one or more trajectories that the system

already knows. In [3], activities performed by a group of

moving and interacting objects are modeled as shapes and

abnormal activities are defined as a change in the shape

activity model. In the context of elder care, [22] proposes

an approach that first analyzes and designs features, and

then detects abnormal activities using a method based on

the designed features and Support Vector Data Description.

[23] proposes a methodology to characterize novel scenes

over long time periods without a priori knowledge. A

hierarchical modeling process, characterizing an activity at

multiple levels of resolution, is developed to classify and

predict future activities and detect abnormal behavior.

Other relevant work. In [24], unusual events are detected

by monitoring the scene with monitors which extract local

low-level observations from the video stream. The monitor

computes the likelihood of a new observation with respect

to the probability distribution of prior observations. If

the likelihood falls below a threshold, then the monitor

outputs an alert. The local alerts issued by the monitors are

then combined. [25] automatically learns high frequency

events (taking spatio-temporal aspects into account) and

declares them normal—events deviating from these rules

are anomalies. [26] learns storylines from weakly labeled

videos. A storyline includes the actions that occur in a video

and their causal relationships. AND-OR graphs are used to

represent storyline models.

The notion of unexplained sequences used in this paper

has been proposed in [27].

2.2 Cyber Security

Intrusion detection systems (IDSs) monitor network traffic

for suspicious behavior and trigger alerts [28], [29], [30].

Alert correlation methods aggregate such alerts into multi-

step attacks [31], [32], [33], [34], [35], [36].

Intrusion detection. Intrusion detection techniques can be

broadly classified into signature-based [30] and profile-
based (or anomaly-based) [29] methods. A signature refers

to a set of conditions that characterize intrusion activities

w.r.t. packet headers and payload content. Historically,

signature-based methods have been used extensively to de-

tect malicious activities. On the other hand, in profile-based

methods, a known deviation from the norm is considered

anomalous (e.g. HTTP traffic on a non-standard port).

In contrast, in this paper, we consider the case where

we have a set A of known activities (both innocuous and

dangerous)—and we are looking for observation sequences

that cannot be explained by either (if they were, they would

constitute patterns that were known a priori). These need

to be flagged as they might represent “zero day” attacks—

attacks that were never seen before and vary significantly

from past known access patterns.

Correlation techniques. The goal of correlation is to find

causal relationships between alerts in order to reconstruct

Fig. 2: Example of stochastic activity: ATM deposit

attacks from isolated alerts. The main role of correlation is

to provide a higher level view of the actual attacks [33],

[35], [34], [37], [38], [39].

IDSs and correlation techniques rely on models encoding

a priori knowledge of either normal or malicious behavior,

and cannot appropriately deal with events that are not

explained by the underlying models.

The framework and algorithms for identifying unex-

plained sequences presented in this paper are domain inde-

pendent and may be applied to any domain including both

activity detection in video and in cyber-security.

3 BASIC ACTIVITY MODEL

This section extends the stochastic activity model of [1] by

adding a function δ which expresses a constraint on the

maximum “temporal distance” between two actions in an

activity (though we make no claims of novelty for this).

We assume the existence of a finite set S of action
symbols, corresponding to observable atomic actions. For

instance, in the video domain, action symbols might be

recognized by sophisticated image processing algorithms,

while in the cyber-security domain, they may simply be

read from a log file. Though our unexplained sequence de-

tection framework is domain-independent, in some domains

such as video surveillance, the problem of recognizing low-

level actions in video can be a big challenge.

Definition 3.1 (Stochastic activity): A stochastic activity
is a labeled directed graph A = (V,E, δ, ρ) where

• V is a finite set of nodes labeled with action symbols

from S;

• E ⊆ V × V is a set of edges;

• δ : E → N+ associates, with each edge 〈vi, vj〉, an

upper bound on the time that can elapse between vi
and vj ;

• ρ is a function that associates, with each node v ∈ V
having out-degree 1 or more, a probability distribution

on {〈v, v′〉 | 〈v, v′〉 ∈ E}, i.e.,
∑

〈v,v′〉∈E

ρ(〈v, v′〉) = 1;

• there exists at least one start node in the activity def-

inition, i.e. {v ∈ V | � v′ ∈ V s.t. 〈v′, v〉 ∈ E} �= ∅;

• there exists at least one end node in the activity defi-

nition, i.e. {v ∈ V | � v′ ∈ V s.t. 〈v, v′〉 ∈ E} �= ∅.

Figure 2 shows a stochastic activity of deposits at an

Automatic Teller Machine (ATM). Each edge e is labeled

with (δ(e), ρ(e)). For an edge e = 〈s1, s2〉, δ(e) specifies

the maximum time between when s1 is observed and

when s2 is observed. ρ specifies the probability of going

from one node to another (the probability distribution
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associated with a node gives the transition probability from

that node). For instance, the two edges starting at node

insertCard mean that there is a 50% probability of going

to node insertChecks and a 50% probability of going

to node insertCash from node insertCard. In addition,

insertChecks and insertCash must follow insertCard
within 2 and 1 time units, respectively.

In general, each node of a stochastic activity definition

is something that can be detected by application code.

For instance, if we are tracking activities in video, each

node in a stochastic activity would be something that

can be detected by an image processing program, e.g.

“Detect Person” in Figure 2 may be identified as holding

only if a probabilistic face recognition program returns a

probability over some threshold that a given frame (or block

of frames) contains a face in it. Likewise, in a cybersecurity

application, a node in an activity such as “Attempted login”

may only be identified as occurring if a log file archives

a login attempt. For the sake of simplicity, we use “high

level” descriptions of nodes in our examples, as opposed to

low level descriptions (e.g., the color histogram of a given

image shows over 70% of the colors are a certain shade).
An instance of a stochastic activity A is a path in A from

a start node to an end node.

Definition 3.2 (Stochastic activity instance): An

instance of a stochastic activity (V,E, δ, ρ) is a sequence

〈s1, . . . , sm〉 of nodes in V such that

• 〈si, si+1〉 ∈ E for 1 ≤ i < m;

• {s | 〈s, s1〉 ∈ E} = ∅, i.e., s1 is a start node; and

• {s | 〈sm, s〉 ∈ E} = ∅, i.e., sm is an end node.

The probability of the instance is
∏m−1

i=1 ρ(〈si, si+1〉).
In Figure 2, 〈detectPerson, insertCard, insertCash,

withdrawCard〉 is an instance with probability 0.35.

Throughout this paper, we assume an arbitrary but fixed

set A of stochastic activities.
The preceding definitions do not take observation se-

quences into account. In order to define when activity oc-

currences are detected in a sequence of time-stamped obser-

vation data, we first need to formally define an observation

sequence. An observation sequence is a finite sequence

of observation IDs. An observation ID (OID) f has an

associated timestamp, denoted f.ts, and an associated set of

action symbols, denoted f.obs. Without loss of generality,

we assume timestamps to be positive integers. For instance,

if our observation sequence is a video, then the OIDs may

be frame IDs with f.ts being the timestamp associated with

frame f and f.obs being the actions detected in frame f . On

the other hand, if our observation sequence is a sequence

of transactions at a website, the OIDs are transaction IDs,

f.ts is the timestamp associated with transaction f , and

f.obs are the actions associated with transaction f .

Example 3.1 (Video example): An observation sequence

might be a video v = 〈f1, f2, f3, f4, f5〉, where the fi’s are

frame IDs, fi.ts= i for 1≤ i≤5, f1.obs={detectPerson},

f2.obs = {insertCard}, f3.obs = {insertCash}, f4.obs =
{withdrawCash}, f5.obs = {withdrawCard}. Notice that

withdrawCash in frame f4 does not appear in the stochastic

activity of Figure 2. In general, action symbols may be

detected in a frame even if they do not appear in the

definition of a stochastic activity because it is irrelevant

for that activity.

Throughout the paper, we use the following terminol-

ogy and notation for (general) sequences. Suppose S1 =
〈a1, . . . , an〉 and S2 = 〈b1, . . . , bm〉 are two sequences. S2

is a subsequence of S1 iff there exist 1 ≤ j1 < j2 < . . . <
jm ≤ n s.t. bi = aji for 1 ≤ i ≤ m. If ji = ji+1 − 1
for 1 ≤ i < m, then S2 is a contiguous subsequence of

S1. We write S1 ∩ S2 �= ∅ iff S1 and S2 have a common

element and write e ∈ S1 iff e is an element appearing

in S1. The concatenation of S1 and S2, i.e., the sequence

〈a1, . . . , an, b1, . . . , bm〉, is denoted by S1 ·S2. Finally, |S1|
denotes the number of elements in S1.

We now define an occurrence of a stochastic activity in

an observation sequence.

Definition 3.3 (Activity occurrence): Let v be an obser-

vation sequence and A= (V,E, δ, ρ) a stochastic activity.

An occurrence o of A in v is a sequence 〈(f1, s1), . . . ,
(fm, sm)〉 such that

• 〈f1, . . . , fm〉 is a subsequence of v,

• 〈s1, . . . , sm〉 is an instance of A,

• si ∈ fi.obs, for 1 ≤ i ≤ m, and 1

• fi+1.ts− fi.ts ≤ δ(〈si, si+1〉), for 1 ≤ i < m.

The probability of o, denoted p(o), is the probability of the

instance 〈s1, . . . , sm〉.
When concurrently monitoring multiple activities, shorter

activity instances generally tend to have higher probability.

To remedy this, we normalize occurrence probabilities by

introducing the relative probability p∗(o) of an occurrence

o of activity A as p∗(o) = p(o)
pmax

, where pmax is the highest

probability of any instance of A.

Example 3.2 (Video example): Consider the video of

Example 3.1. An occurrence of the activity of Figure 2 is

o = 〈(f1, detectPerson), (f2, insertCard), (f3, insertCash),
(f5,withdrawCard)〉, and p∗(o) = 0.875. Notice that if the

edge going from insertCash to withdrawCard was labeled

with 1 by δ, then o would not have been an activity

occurrence because withdrawCard was required to follow

insertCash within at most 1 time unit, whereas it occurs

after 2 time units in the video.

We use O(v) to denote the set of all activity occurrences

in v. Whenever v is clear from the context, we write O
instead of O(v).

The next section describes our framework for discover-

ing unexplained sequences in an application-independent

manner. It is worth noting that the actual input of the

framework consists of an observation sequence and a set of

activity occurrences (each with a probability). Though our

framework is domain-independent, there can be challenges

in providing the observations associated with OIDs in some

domains (e.g. video surveillance, where identifying the low

level actions in a video frame can be highly non-trivial).

1. With a slight abuse of notation, we use si to refer to both node si
and the action symbol labeling it.
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4 UNEXPLAINED SEQUENCE PROBABILITY
MODEL

This section defines the probability that an observation

sequence is unexplained by A. We note that the occurrence

of an activity in an observation sequence can involve

conflicts. For instance, consider the activity occurrence o
in Example 3.2 and suppose there is a second activity

occurrence o′ such that (f1, detectPerson) ∈ o′. In this

case, there is an implicit conflict because (f1, detectPerson)
belongs to both occurrences, but in fact, detectPerson can

only belong to one activity occurrence, i.e. though o and o′

may both have a non-zero probability, the probability that

these two activity occurrences coexist is 0. Formally, we

say two activity occurrences o, o′ conflict, denoted o � o′,
iff o ∩ o′ �= ∅. We now use this to define possible worlds.

Definition 4.1 (Possible world): Let O be the set of all

activity occurrences in an observation sequence v. A possi-
ble world for v is a subset w of O s.t. �oi, oj ∈ w, oi � oj .

Thus, a possible world is a set of activity occurrences

which do not conflict with one another, i.e., an action

symbol in an OID cannot belong to two distinct activity

occurrences in the same world. We use W(v) to denote the

set of all possible worlds for an observation sequence v;

whenever v is clear from the context, we simply write W .

Example 4.1 (Video example): Consider a video with

two conflicting occurrences o1, o2. There are 3 possible

worlds: w0 = ∅, w1 = {o1}, and w2 = {o2}. Note that

{o1, o2} is not a world as o1 � o2. Each world represents

a way of explaining what is observed. The first world

corresponds to the case where nothing is explained, the

second and third worlds correspond to the scenarios where

we use one of the two possible occurrences to explain the

observed action symbols.

Note that any subset of O not containing conflicting

occurrences is a legitimate possible world—possible worlds

are not required to be maximal w.r.t. ⊆. In the above

example, the empty set is a possible world even though

there are two other possible worlds w1 = {o1} and

w2 = {o2} which are supersets of it. The reason is that

o1 and o2 are uncertain, so the scenario where neither o1
nor o2 occurs is a legitimate one. We illustrate this below.

Example 4.2 (Video example): Suppose we have a video

where a single occurrence o has p∗(o)=0.6. In this case, it

is natural to say that there are two possible worlds w0=∅
and w1 = {o} and expect the probabilities of w0 and w1

to be 0.4 and 0.6, respectively. By restricting ourselves to

maximal possible worlds only, we would have only one

possible world, w1, whose probability is 1, which is wrong.

It is worth noting that the problem of finding pos-

sible worlds corresponds to the problem of finding the

independent sets of a graph: occurrences are vertices,

conflicts are edges, possible worlds are independent sets.

Thus, algorithms to find maximal independent sets can be

directly applied to compute possible worlds—all possible

worlds can be simply obtained by taking all subsets of the

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15 f16

o1 o3 o4

o2 o5

Fig. 3: Conflict-Based Partitioning of a video

maximal independent sets. An efficient algorithm for gener-

ating all the maximal independent sets has been proposed

in [40], processing time and memory space are bounded

by O(nmμ) and O(n+m), respectively, where n, m, and

μ are the numbers of vertices (occurrences in our case),

edges (conflicts in our case), and maximal independent sets

(possible worlds in our case) of a graph.

We use
∗
� to denote the transitive closure of �. Clearly,

∗
� is an equivalence relation and determines a partition of

O into equivalence classes O1, . . . ,Om. Here the basic

idea is to partition the observation sequence into subse-

quences containing occurrences that conflict directly or in

a “transitive” way (we will formally define this with the

notion of a Conflict-Based Partitioning in Definition 4.2

and illustrate it in Example 4.4). Equivalence classes that

temporally overlap are collapsed into a single one.2

Example 4.3 (Video example): Suppose we have a video

v = 〈f1, . . . , f16〉 s.t. five occurrences o1, o2, o3, o4, o5 are

detected as depicted in Figure 3, that is, o1 � o2, o2 � o3,

and o4 � o5. There are two equivalence classes determined

by
∗
�, namely O1 = {o1, o2, o3} and O2 = {o4, o5}.

The equivalence classes determined by
∗
� lead to a

conflict-based partitioning of an observation sequence.

Definition 4.2 (Conflict-Based Partitioning): Let v be an

observation sequence and O1, . . . ,Om the equivalence

classes determined by
∗
�. A Conflict-Based Partitioning

(CBP) of v is a sequence 〈v1, . . . , vm〉 such that:

• v1 · . . . · vm = v, and

• O(vi) = Oi, for 1 ≤ i ≤ m.

The vi’s are called segments.

Example 4.4 (Video example): A CBP of the video in

Example 4.3 is 〈v1, v2〉, where v1 = 〈f1, . . . , f9〉 and v2 =
〈f10, . . . , f16〉. Another partitioning of the same video is

the one where v1 = 〈f1, . . . , f10〉 and v2 = 〈f11, . . . , f16〉.
Thus, activity occurrences determine a set of possible

worlds (different ways of explaining an observation se-

quence). We wish to find a probability distribution over

all possible worlds that (i) is consistent with the relative

probabilities of the occurrences, and (ii) takes conflicts

into account. We assume the user specifies a function

Weight : A → R+ which assigns a weight to each activity

and prioritizes the importance of the activity.3 The weight

2. Two equivalence classes Oi and Oj temporally overlap iff
[min(Oi),max(Oi)]∩ [min(Oj),max(Oj)] �= 0, where min(Oi) =
min{f.ts | ∃o ∈ Oi, (f, s) ∈ o}, max(Oi) = max{f.ts | ∃o ∈
Oi, (f, s) ∈ o}, and min(Oj), max(Oj) are analogously defined.

3. For instance, highly threatening activities may be assigned a high
weight.
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of an occurrence o of activity A is the weight of A. We

use C(o) to denote the set of occurrences conflicting with

o, i.e., C(o) = {o′ | o′ ∈ O∧ o′ � o}. Note that o ∈ C(o);
and C(o) = {o} when o does not conflict with any other

occurrence. Finally, we assume that activity occurrences

belonging to different segments are independent events.

Suppose pw denotes the (unknown) probability of world

w. As we know the probability of occurrences, and as each

occurrence occurs in certain worlds, we can induce a set

of nonlinear constraints that will subsequently be used to

learn the values of the pw’s.

Definition 4.3: Let v be an observation sequence and

O1, . . . ,Om the equivalence classes determined by
∗
�. We

define the non-linear constraints NLC(v) as follows:
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

pw ≥ 0, ∀w ∈ W∑

w∈W
pw = 1

∑

w∈W s.t. o∈w

pw = p∗(o) · Weight(o)∑
oj∈C(o) Weight(oj)

, ∀o ∈ O

pw =

m∏

k=1

∑

w′∈W s.t. w′∩Ok=w∩Ok

pw′ ∀w ∈ W

The first two types of constraints enforce a probability

distribution over the set of possible worlds. The third type

of constraint ensures that the probability of occurrence

o—which is the sum of the probabilities of the worlds

containing o—is equal to its relative probability p∗(o)
weighted by

Weight(o)∑
oj∈C(o) Weight(oj)

. Note that: (i) the value on

the right-hand side of the third type of constraint decreases

as the amount of conflict increases, (ii) if an occurrence

o is not conflicting with any other occurrence, then its

probability
∑

w∈W s.t. o∈w pw is equal to p∗(o), i.e., the

probability returned by the stochastic automaton. The last

kind of constraint reflects independence between segments.

In general NLC(v) might admit multiple solutions.

Example 4.5 (Video example): Consider a single-

segment video consisting of frames f1, . . . , f9 (cf.

Figure 3). Suppose o1, o2, o3 have been detected with

relative probabilities 0.3, 0.6, and 0.5, respectively.

Suppose the weights of o1, o2, o3 are 1, 2, 3, respectively.

Five worlds are possible: w0= ∅, w1 = {o1}, w2 = {o2},

w3 = {o3}, and w4 = {o1, o3}. Then, NLC(v) is:4

pi ≥ 0 0 ≤ i ≤ 4
p0 + p1 + p2 + p3 + p4 = 1
p1 + p4 = 0.3 · 1

3

p2 = 0.6 · 1
3

p3 + p4 = 0.5 · 3
5

which has multiple solutions. One solution is p0 = 0.4,

p1 = 0.1, p2 = 0.2, p3 = 0.3, p4 = 0. Another solution is

p0 = 0.5, p1 = 0, p2 = 0.2, p3 = 0.2, p4 = 0.1.

In the rest of the paper, we assume that NLC(v) is solv-

able.5 We say that a sequence S = 〈(f1, s1), . . . , (fn, sn)〉
occurs in an observation sequence v iff 〈f1, . . . , fn〉 is a

4. For brevity, we do not explicitly list the independence constraints.

5. This can be easily checked via both a non-linear constraint solver,
as well as methods developed in the next section.

(f1,s1) (f2,s2) (f3,s3) (f4,s4) (f5,s5) (f6,s6) (f7,s7) (f8,s8) (f9,s9) 

o1 o2 

S1 
S2 

S3 

Fig. 4: Totally and partially unexplained sequences

contiguous subsequence of v and si ∈ fi.obs for 1 ≤ i ≤ n.

We give two semantics for S to be unexplained in a

world w ∈ W . Intuitively, S is totally (resp. partially)

unexplained in w iff w does not explain every (resp. at

least one) symbol of S. More formally:

1) S is totally unexplained in w, denoted w�TS, iff

∀(fi, si) ∈ S, �o ∈ w, (fi, si) ∈ o;

2) S is partially unexplained in w, denoted w�PS, iff

∃(fi, si) ∈ S, �o ∈ w, (fi, si) ∈ o.

Example 4.6 (Video example): Suppose we have a video

v = 〈f1, . . . , f9〉 such that fi.obs = {si}, 1 ≤ i ≤ 9,

and two occurrences o1 and o2 are detected (cf. Figure 4).

The four possible worlds are: w0 = ∅, w1 = {o1}, w2 =
{o2}, w3 = {o1, o2}. Let S1 = 〈(f4, s4), (f5, s5)〉, S2 =
〈(f3, s3), (f4, s4)〉, S3 = 〈(f2, s2), (f3, s3)〉 be sequences

occurring in v. S1 is totally (and partially) unexplained in

every world. S2 is totally unexplained in w0 and w2 but

not in w1 and w3; moreover, S2 is partially unexplained in

every world. S3 is totally and partially unexplained in w0

and w2 but not in w1 and w3.

We now define the probability of a sequence in an

observation sequence being totally/partially unexplained.

Definition 4.4: Let S be a sequence occurring in an

observation sequence v. The probability interval that S is

totally unexplained in v is IT (S) = [l, u], where:

l = minimize
∑

w∈W s.t. w�TS pw
subject to NLC(v)

u = maximize
∑

w∈W s.t. w�TS pw
subject to NLC(v)

The probability interval that S is partially unexplained in

v is IP (S) = [l′, u′], where l′, u′ are derived in exactly the

same way as l, u above by replacing the �T symbols in the

above optimization problems by �P .

Thus, the probability that a sequence S occurring in

v is totally (resp. partially) unexplained w.r.t. a solution

of NLC(v) is the sum of the probabilities of the worlds

in which S is totally (resp. partially) unexplained. As

NLC(v) may have multiple solutions, we find the tightest

interval [l, u] (resp. [l′, u′]) containing this probability for

any solution. Different criteria can be used to infer a value

from an interval [l, u], e.g. the MIN l, the MAX u, the

average (i.e., (l + u)/2), etc. The only requirement is that

this value has to be in [l, u]. We henceforth assume that such

criterion has been chosen—PT (S) (resp. PP (S)) denotes

the probability that S is totally (resp. partially) unexplained.

The following proposition says that the probability that a

sequence is totally (resp. partially) unexplained is no higher
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(resp. lower) than the probability of any subsequence.

Proposition 4.1: Consider two sequences S1 and S2 oc-

curring in an observation sequence. If S1 is a subsequence

of S2, then PT (S1) ≥ PT (S2) and PP (S1) ≤ PP (S2).

We now define totally and partially unexplained se-

quences.

Definition 4.5 (Unexplained sequences): Let v be an ob-

servation sequence, τ ∈ [0, 1] a probability threshold, and

L ∈ N+ a length threshold. A sequence S occuring in v is:

• A totally unexplained sequence if (i) PT (S) ≥ τ ,

(ii) |S| ≥ L, and (iii) S is maximal, i.e., there is no

sequence S′ �= S occurring in v s.t. S is a subsequence

of S′, PT (S
′) ≥ τ , and |S′| ≥ L.

• A partially unexplained sequence if (i) PP (S) ≥ τ ,

(ii) |S| ≥ L, and (iii) S is minimal, i.e., there is

no sequence S′ �= S occurring in v s.t. S′ is a

subsequence of S, PP (S
′) ≥ τ , and |S′| ≥ L.

In this definition, L is the minimum length a sequence

must be for it to be considered possibly unexplained.

Totally unexplained sequences (TUSs for short) S have to

be maximal because once we find S, any sub-sequence of

it is (totally) unexplained with probability greater than or

equal to that of S. On the other hand, partially unexplained

sequences (PUSs for short) S′ have to be minimal because

once we find S′, any super-sequence of it is (partially)

unexplained with probability greater than or equal to that

of S′.
Intuitively, an unexplained sequence is a sequence of

action symbols that are observed in the observation se-

quence and poorly explained by known activity models.

Such sequences might correspond to unknown variants

of known activities or to entirely new—and unknown—

activities.

An Unexplained Sequence Problem (USP) instance is a

triple I = 〈v, τ, L〉 where v is an observation sequence,

τ ∈ [0, 1] is a probability threshold, and L ∈ N+ is a length

threshold. We want to find the sets Atu(I) and Apu(I) of

all totally and partially unexplained sequences, respectively.

When I is clear from context, we will drop it.

The following definition introduces the top-k totally and

partially unexplained sequences. Intuitively, these are k
unexplained sequences having maximum probability.

Definition 4.6 (Top-k unexplained sequences):
Consider a USP instance and let k ∈ N+. Atu

k ⊆ Atu

(resp. Apu
k ⊆ Apu) is a set of top-k totally (resp. partially)

unexplained sequences iff |Atu
k | = min{k, |Atu|} (resp.

|Apu
k | = min{k, |Apu|}), and ∀S ∈ Atu

k , ∀S′ ∈ Atu −Atu
k

(resp. ∀S ∈ Apu
k , ∀S′ ∈ Apu − Apu

k ) PT (S) ≥ PT (S
′)

(resp. PP (S) ≥ PP (S
′)).

Suppose we have a USP instance. For any S, S′ ∈ Atu

(resp. S, S′ ∈ Apu), we write S =T S′ (resp. S =P S′) iff

PT (S) = PT (S
′) (resp. PP (S) = PP (S

′)). Obviously, =T

(resp. =P ) is an equivalence relation and determines a set

Ctu (resp. Cpu) of equivalence classes. For any equivalence

class C ∈ Ctu (resp. C ∈ Cpu) we define PT (C) (resp.

PP (C)) as the (unique) probability of the sequences in C.

Symbol Description
A Set of stochastic activities
s Action symbol
f Observation ID (OID)
f.ts Timestamp associated with observation ID f
f.obs Set of action symbols associated with observation ID f
v Observation sequence
o and O Activity occurrence and set of activity occurrences
w and W Possible world and set of possible worlds
〈v1, . . . , vm〉 Conflict-based partitioning (CBP) of observation sequence

v. Each vi is called a segment
NLC(v) Set of non-linear constraints for observation sequence v
LC(v) Set of linear constraints for observation sequence v
w�TS Sequence S is totally unexplained in world w
w�PS Sequence S is partially unexplained in world w
IT (S) Probability interval that sequence S is totally unexplained
IP (S) Probability interval that sequence S is partially unexplained
PT (S) (Point) Probability that sequence S is totally unexplained
PP (S) (Point) Probability that sequence S is partially unexplained

TABLE 1: Notation

Compared with the top-k unexplained sequences, the

top−k unexplained classes find all the unexplained se-

quences having the k highest probabilities.

Definition 4.7 (Top-k unexplained classes): Consider a

USP instance and let k ∈ N+. Ctu
k ⊆ Ctu (resp. Cpu

k ⊆
Cpu) is the set of top-k totally (resp. partially) unex-

plained classes iff |Ctu
k | = min{k, |Ctu|} (resp. |Cpu

k | =
min{k, |Cpu|}), and ∀C ∈ Ctu

k , ∀C ′ ∈ Ctu − Ctu
k (resp.

∀C ∈ Cpu
k , ∀C ′ ∈ Cpu − Cpu

k ) PT (C) > PT (C
′) (resp.

PP (C) > PP (C
′)).

Table 1 summarizes the main notation used in the paper.

5 PROPERTIES OF USPS

This section derives properties that can be leveraged (in

the next section) to devise efficient algorithms to solve

USPs. We first show an interesting property concerning the

solution of NLC(v) (some later results rely on it); the

following two subsections consider specific properties for

totally and partially unexplained sequences.

For a given observation sequence v, we show that if

〈v1, . . . , vm〉 is a CBP, then we can find solutions of the

non-linear constraints NLC(v) by solving m smaller sets
of linear constraints.6 Let LC(v) be the set of linear

constraints of NLC(v) (i.e., all constraints of Definition 4.3

except for the last kind). Henceforth, we use W to denote

W(v) and Wi to denote W(vi), 1 ≤ i ≤ m. A solution of

NLC(v) is a mapping P : W → [0, 1] which satisfies

NLC(v). Likewise, a solution of LC(vi) is a mapping

Pi : Wi → [0, 1] which satisfies LC(vi). It is important

to note that W = {w1 ∪ . . . ∪wm | wi ∈ Wi, 1 ≤ i ≤ m}.

Theorem 1: Let v be an observation sequence and

〈v1, . . . , vm〉 a CBP. P is a solution of NLC(v) iff

∀i ∈ [1,m] there exists a solution Pi of LC(vi)

6. This yields two benefits: (i) It allows us to solve a smaller set of
constraints. (ii) It allows us to solve linear constraints which are easier to
solve than nonlinear ones. Moreover, it allows us to drastically reduce the
space of possible worlds considered, as we can consider each segment vi
(and its corresponding possible worlds) individually, thereby avoiding the
blow up we would get by combining possible worlds of different segments.
This also applies to Theorems 2 and 4.
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S

Fig. 5: Conflict-Based Partitioning of a video

s.t. P(
⋃m

i=1 wi) =
∏m

i=1 Pi(wi) for every w1 ∈
W1, . . . , wm ∈ Wm.

The following example illustrates the previous theorem.

Example 5.1 (Video example): Consider the video v of

Example 4.3 (cf. Figure 3). As shown in Example 4.4, one

possible CBP of v is 〈v1, v2〉, where v1 = 〈f1, . . . , f9〉 and

v2 = 〈f10, . . . , f16〉. Theorem 1 says that for each solution

P of NLC(v), there is a solution P1 of LC(v1) and a

solution P2 of LC(v2) s.t. P(w1∪w2) = P1(w1)×P(w2)
for every w1 ∈ W1, w2 ∈ W2, and vice versa.

Consider an observation sequence v and let 〈v1, . . . , vm〉
be a CBP. Given a sequence S = 〈(f1, s1), . . . , (fq, sq)〉
occurring in v, we say that vi, vi+1, . . . , vi+n (1 ≤ i ≤
i + n ≤ m) are the segments containing S iff f1 ∈ vi
and fq ∈ vi+n. In other words, S spans the segments

vi, vi+1, . . . , vi+n: it starts at a point in segment vi (as

vi contains the first OID of S) and ends at some point

in segment vi+n (as vi+n contains the last OID of S).

Sk denotes the projection of S on the k-th segment vk
(i ≤ k ≤ i + n), that is, the subsequence of S containing

all the pairs (f, s) ∈ S with f ∈ vk.

Example 5.2 (Video example): Suppose we have a video

v = 〈f1, . . . , f21〉 such that fi.obs = {si} for 1 ≤
i ≤ 21. In addition, suppose 8 occurrences are detected

as shown in Figure 5. Consider the CBP 〈v1, v2, v3, v4〉,
where v1 = {f1, . . . , f5}, v2 = {f6, . . . , f10}, v3 =
{f11, . . . , f16}, and v4 = {f17, . . . , f21}. Consider now

the sequence S = 〈(f8, s8), . . . , (f14, s14)〉 occurring in

v. Then, v2 and v3 are the segments containing S. More-

over, S2 denotes 〈(f8, s8), . . . , (f10, s10)〉, and S3 denotes

〈(f11, s11), . . . , (f14, s14)〉.

5.1 Totally unexplained sequences

The following theorem says that we can compute IT (S)
by solving LC (which are linear constraints) for each

segment containing S (instead of solving a non-linear set

of constraints for the whole observation sequence).

Theorem 2: Consider an observation sequence v. Let

〈v1, . . . , vm〉 be a CBP and 〈vi, . . . , vi+n〉 the segments

containing a sequence S occurring in v. For i ≤ k ≤ i+n,

let
lk = minimize

∑
w∈Wk s.t. w�TSk

pw
subject to LC(vk)

uk = maximize
∑

w∈Wk s.t. w�TSk
pw

subject to LC(vk)

If IT (S) = [l, u], then l =
∏i+n

k=i lk and u =
∏i+n

k=i uk.

The following example illustrates the theorem above.

Example 5.3 (Video example): Consider Example 5.2,

which is depicted in Figure 5. IT (S) can be computed

by solving the non-linear program of Definition 4.4 for the

whole video v. But Theorem 2 says that IT (S) can be

computed as IT (S) = [l2 × l3, u2 × u3], where l2, u2, l3,

u3 are computed as defined in Theorem 2, i.e. by solving

two smaller linear programs for v2 and v3.

The following theorem provides a sufficient condition for

a pair (f, s) not to be included in any sequence S occurring

in v and having PT (S) ≥ τ .

Theorem 3: Let 〈v, τ, L〉 be a USP instance. Given (f, s)

s.t. f ∈ v and s ∈ f.obs, let ε =
∑

o∈O s.t. (f,s)∈o

p∗(o) ·

Weight(o)∑
oj∈C(o) Weight(oj)

. If ε > 1 − τ , then there does not

exist a sequence S occurring in v s.t. (f, s) ∈ S and

PT (S) ≥ τ .

If the above condition holds for a pair (f, s), then we

say that (f, s) is sufficiently explained. Note that to check
whether a pair (f, s) is sufficiently explained, we do not
need to solve any set of linear or non-linear constraints,
since ε is computed by simply summing the (weighted)
probabilities of the occurrences containing (f, s). Thus,

this result yields a further efficiency. An OID f is suffi-
ciently explained iff (f, s) is sufficiently explained for every

s ∈ f.obs. If (f, s) is sufficiently explained, then it can

be disregarded when identifying unexplained sequences.

Moreover, this may allow us to disregard entire parts of

observation sequences as shown in the example below.

Example 5.4 (Video example): Consider a USP instance

〈v, τ, L〉 where v = 〈f1, . . . , f9〉 is s.t. fi.obs = {si} for

1 ≤ i ≤ 9, as depicted in Figure 6.

(f6,s6)(f4,s4)(f4,s4)((f1,s1)(f1,s1) (f2,s2) ) (f6,s6)( )(f3,s3) (f5,s5) (f7,s7) (f8,s8)) ((f8,s8)) (f9,s9)

PDFill PDF Editor with Free Writer and Tools

Fig. 6: Sufficiently explained frames in a video.

Suppose L = 3 and (f1, s1), (f4, s4), (f6, s6) are suf-

ficiently explained. Even though the theorem is applicable

to only a few (fi, si) pairs, we see that no unexplained

sequence can be found before f7 as L = 3.

Given a USP instance I = 〈v, τ, L〉 and a subsequence v′

of v, v′ is relevant iff (i) v′ is a contiguous subsequence of

v (ii) |v′| ≥ L, (iii) ∀f ∈ v′, f is not sufficiently explained,

and (iv) v′ is maximal (i.e., there does not exist v′′ �= v′ s.t.

v′ is a subsequence of v′′ and v′′ satisfies (i), (ii), (iii)). We

use relevant(I) to denote the set of relevant observation

subsequences.

Theorem 3 entails that relevant observation subsequences

can be individually considered when looking for totally un-

explained sequences because there is no totally unexplained

sequence spanning two different relevant observation sub-

sequences.
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5.2 Partially unexplained sequences
The following theorem states that we can compute IP (S)
by solving NLC for the observation subsequence consist-

ing of the segments containing S (instead of solving NLC
for the whole observation sequence).

Theorem 4: Consider an observation sequence v. Let

〈v1, . . . , vm〉 be a CBP and 〈vi, . . . , vi+n〉 be the segments

containing a sequence S occurring in v. Let v∗ = vi · . . . ·
vi+n. IP (S) computed w.r.t. v is equal to IP (S) computed

w.r.t. v∗.

We now illustrate the use of the preceding theorem.

Example 5.5 (Video example): Consider Example 5.2 as

shown in Figure 5. By definition, IP (S) can be computed

by solving the non-linear program of Definition 4.4 for the

whole video v. Alternatively, Theorem 4 says that IP (S)
can be computed by solving the non-linear program of

Definition 4.4 for the sub-video v∗ = v2 · v3.

6 TOP-k ALGORITHMS

We now present algorithms to find top-k totally and

partially unexplained sequences and classes. For ease of

presentation, we assume |f.obs| = 1 for every OID f in

an observation sequence (this makes the algorithms much

more concise – generalization to the case of multiple action

symbols per OID is straightforward7). Given an observation

sequence v = 〈f1, . . . , fn〉, we use v(i, j) (1 ≤ i ≤ j ≤ n)

to denote the sequence S = 〈(fi, si), . . . , (fj , sj)〉, where

sk is the only element in fk.obs, i ≤ k ≤ j.

6.1 Top-k TUS and TUC
The Top-k TUS algorithm computes a set of top-k totally

unexplained sequences in an observation sequence. Note

that:

• at every time, lowest is defined as follows:

lowest =
{

−1 if |TopSol| < k
min{PT (S) | S ∈ TopSol} if |TopSol| = k

• On line 30, “Add S to TopSol” works as follows:

– If |TopSol| < k, then S is added to TopSol;
– otherwise, a sequence S′ in TopSol having min-

imum PT (S
′) is replaced by S.

Leveraging Theorem 3, Top-k TUS considers only rel-

evant observation subsequences of v individually (line 2).

When it finds a sequence v′(start, end) of length at least

L having a probability of being totally unexplained greater

than lowest (line 5), it makes the sequence maximal by

adding OIDs on the right (lines 7–14). Instead of adding

one OID at a time, v′(start, end) is extended by L OIDs

at a time until its probability drops below τ (lines 9–10); a

binary search is then performed to find the exact maximum

length of the unexplained sequence (lines 15–25). While

making the sequence maximal, if the algorithm realizes

that the unexplained sequence will not have a probability

7. It suffices to consider the different sequences given by the different
action symbols.

Algorithm 1 Top-k TUS
Input: USP instance I = 〈v, τ, L〉, k ≥ 1
Output: Top-k totally unexplained sequences
1: TopSol = ∅
2: for all v′ ∈ relevant(I) do
3: start = 1; end = L
4: repeat
5: if PT (v′(start, end)) ≥ τ∧PT (v′(start, end)) > lowest then
6: end′ = end
7: while end < |v′| do
8: end = min{end + L, |v′|}
9: if PT (v′(start, end)) < τ then

10: break
11: else
12: if PT (v′(start, end)) ≤ lowest then
13: end = end + 1
14: go to line 33
15: s = max{end − L, end′}; e = end
16: while e �= s do
17: mid = �(s + e)/2

18: if PT (v′(start,mid)) ≥ τ then
19: if PT (v′(start,mid)) ≤ lowest then
20: end = mid + 1
21: go to line 33
22: else
23: s = mid
24: else
25: e = mid − 1
26: if start > 1 ∧ PT (v′(start − 1, s)) ≥ τ then
27: end = s + 1
28: go to line 33
29: else
30: S = v′(start, s); Add S to TopSol
31: start = start + 1; end = s + 1
32: else
33: start = start + 1; end = max{end, start + L − 1}
34: until end > |v′|
35: return TopSol

greater than lowest (i.e., the sequence is not a top-k TUS),

then the sequence is disregarded and the process of making

the sequence maximal is aborted (lines 12–14 and 19–

21). This pruning allows the algorithm to move forward

in the observation sequence avoiding computing the exact

ending OID of the TUS thereby saving time. Throughout

the algorithm, PT is computed by applying Theorem 2.

Theorem 5: Algorithm Top-k TUS returns a set of top-k
totally unexplained sequences of the input instance.

Algorithm Top-k TUC modifies Top-k TUS as follows

to compute the top-k totally unexplained classes:

• At every time, lowest is defined as follows:

lowest =
{

−1 if |TopSol| < k
min{PT (C) | C ∈ TopSol} if |TopSol| = k

• “Add S to TopSol” (line 30) works as follows:

– If there exists C ∈ TopSol s.t. PT (C) = PT (S),
then S is added to C;

– else if |TopSol| < k, then the class {S} is added

to TopSol;
– otherwise the class C in TopSol having minimum

PT (C) is replaced with {S}.

• On line 5, PT (v
′(start, end)) > lowest is replaced

with PT (v
′(start, end)) ≥ lowest;

• On line 12, PT (v
′(start, end)) ≤ lowest is replaced

with PT (v
′(start, end)) < lowest;

• On line 19, PT (v
′(start,mid)) ≤ lowest is replaced

with PT (v
′(start,mid)) < lowest;
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Algorithm 2 Top-k PUS
Input: USP instance I = 〈v, τ, L〉, k ≥ 1
Output: Top-k partially unexplained sequences
1: TopSol = ∅; start = 1; end = L
2: while end ≤ |v| do
3: if PP (v(start, end)) < τ then
4: end′ = end
5: while end < |v| do
6: end = min{end + L, |v|}
7: if PP (v(start, end)) ≥ τ then
8: break
9: if PP (v(start, end)) ≥ τ then

10: if PP (v(start, end)) > lowest then
11: s = max{end′ + 1, end − L + 1}; e = end
12: while e �= s do
13: mid = �(s + e)/2�
14: if PP (v(start,mid)) < τ then
15: s = mid + 1
16: else
17: if PP (v(start,mid)) ≤ lowest then
18: start = start + 1; end = mid + 1
19: go to line 2
20: else
21: e = mid
22: end = e
23: else
24: start = start + 1; end = end + 1
25: go to line 2
26: else
27: return TopSol
28: s′ = start; e′ = end − L + 1
29: while e′ �= s′ do
30: mid = �(s′ + e′)/2

31: if PP (v(mid, end)) < τ then
32: e′ = mid − 1
33: else
34: if PP (v(mid, end)) ≤ lowest then
35: start = mid + 1; end = end + 1
36: go to line 2
37: else
38: s′ = mid
39: if PP (v(s′, end − 1)) ≥ τ ∧ |v(s′, end − 1)| ≥ L then
40: start = s′ + 1; end = end + 1
41: go to line 2
42: else
43: S = v(s′, end); Add S to TopSol
44: start = s′ + 1; end = end + 1
45: return TopSol

The algorithm obtained by applying the modifications

above is named Top-k TUC.

Theorem 6: Algorithm Top-k TUC returns the top-k
totally unexplained classes of the input instance.

6.2 Top-k PUS and PUC
The Top-k PUS algorithm below computes a set of top-k
partially unexplained sequences in an observation sequence.

Note that:

• at each time, lowest is defined as follows:

lowest =
{

−1 if |TopSol| < k
min{PP (S) | S ∈ TopSol} if |TopSol| = k

• On line 43, “Add S to TopSol” works as follows:

– If |TopSol| < k, then S is added to TopSol;
– otherwise, a sequence in TopSol having mini-

mum PP is replaced by S.

To find an unexplained sequence, Algorithm Top-k PUS
starts with a sequence of length at least L and adds OIDs to

its right until its probability of being partially unexplained

is above the threshold. As in the case of Top-k TUS,

this is done by adding L OIDs at a time (lines 5–8)

and then performing a binary search (lines 9–27). When

performing the binary search, if at some point the algorithm

realizes that the partially unexplained sequence will not

have a probability greater than lowest, then the sequence

is disregarded and the binary search is aborted (lines 17–19

and lines 24–25). Otherwise, the sequence is shortened on

the left making it minimal (lines 28–38) by performing a

binary search instead of proceeding one OID at a time.

If the algorithm realizes that the partially unexplained

sequence will not have a probability greater than lowest,
then the sequence is disregarded and the shortening process

is aborted (lines 34–36). This allows the algorithm to avoid

computing the exact starting OID of the PUS, thus saving

time. Note that PP is computed by applying Theorem 4.

Theorem 7: Algorithm Top-k PUS returns the set of

top-k partially unexplained sequences of the input instance.

Algorithm Top-k PUC modifies Top-k PUS as follows

to compute the top-k partially unexplained classes:

• At every time, lowest is defined as follows:

lowest =
{

−1 if |TopSol| < k
min{PP (C) | C ∈ TopSol} if |TopSol| = k

• “Add S to TopSol” (line 43) works as follows:

– If there exists C ∈ TopSol s.t. PP (C) = PP (S),
then S is added to C;

– else if |TopSol| < k, then the class {S} is added

to TopSol;
– otherwise the class C in TopSol having minimum

PP (C) is replaced with {S}.

• On line 10, PP (v(start, end)) > lowest is replaced

with PP (v(start, end)) ≥ lowest;
• On line 17, PP (v(start,mid)) ≤ lowest is replaced

with PP (v(start,mid)) < lowest;
• On line 34, PP (v(mid, end)) ≤ lowest is replaced

with PP (v(mid, end)) < lowest;

The algorithm obtained by applying the modifications

above is named Top-k PUC.

Theorem 8: Algorithm Top-k PUC returns the top-k
partially unexplained classes of the input instance.

7 EXPERIMENTAL EVALUATION

We implemented Algorithms Top-k TUS, Top-k PUS,

Top-k TUC and Top-k PUC, and experimentally evaluated

both running time and accuracy on real-world datasets

video and cyber security datasets.

7.1 Video Surveillance Domain

We evaluated our framework on two video datasets: (i)
a video we shot by monitoring a university parking lot,

and (ii) a benchmark dataset about video surveillance in an

airport [41]. The frame observations have been generated in
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a semi-automatic way using both image processing libraries

and human intervention.8

7.1.1 Parking lot surveillance video
The set A includes “known” normal activities such as

parking a car, people passing, a person getting in a car

and leaving the parking lot, and abnormal activities such

8. We note that identifying frame observations via the development of
image processing algorithms is an extremely challenging task—the goal
of our work is to present a domain-independent way of identifying unex-
plained sequences that builds upon domain-specific ways of recognizing
actions in observation sequences. In contrast to the difficulty of detecting
actions in video, in cyber-security, it is easy to identify actions in an
observation sequence as they can merely be logged.

as a person taking a package out of the car and leaving it

in the parking lot before driving away, or a person taking an

unattended package in the parking lot. Examples of detected

unexplained sequences are two cars stopping next to each

other in the middle of the parking lot with the drivers

exchanging something before leaving the parking lot, or

a person strolling around a car for a while before leaving

the parking lot.

We compared Algorithms Top-k TUS and Top-k PUS
against “naı̈ve” algorithms which are the same as Top-k
TUS and Top-k PUS but do not exploit the optimizations

provided by the theorems in Section 5.

Figures 7 and 8 show that Top-k TUS and Top-k PUS

Fig. 7: Algorithm Top-k TUS vs. Naı̈ve. Fig. 8: Algorithm Top-k PUS vs. Naı̈ve.
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Fig. 9: Running time of Algorithm Top-k TUS on the parking lot dataset.
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significantly outperform the naı̈ve algorithms which are

not able to scale beyond videos of length 15 and 10

minutes for totally and partially unexplained sequences,

respectively (with longer videos, the naı̈ve algorithms did

not terminate in 3 hours). Figures 9a and 10a zoom in on

the running times for Algorithms Top-k TUS and Top-k
PUS, respectively. The runtimes in Figure 7 when k = 5
and k = All are almost the same (the two curves are

indistinguishable) because, up to 15 minutes, there were

at most 5 totally unexplained sequences in the video. A

similar argument applies to Figure 8.

We also evaluated how the different parameters that

define a USP instance affect the running time by varying

the values of each parameter while keeping the others fixed

to a default value.

Runtime of Top-k TUS. Table 2 reports the values we

considered for each parameter along with the corresponding

default value.

For example, Table 2 says that we measured the running

times to find the top-1, top-2, top-5, and all totally un-

explained sequences (as the video length increases) while

keeping τ = 0.6, L = 200, #worlds = 2E + 07.

Varying k. Figure 9a shows that lower values of k give

lower runtimes. As discussed in the preceding section,

Algorithm Top-k TUS can infer that some sequences are

not going to be top-k TUSs and quickly prune: this is

effective with lower values of k because the probability

threshold to enter the current Top-k TUSs (i.e., lowest in

Algorithm Top-k TUS) is higher, thus fewer candidates are

added to the current Top-k TUSs,making the pruning of

Algorithm Top-k TUS more effective.

Varying τ . Figure 9b shows that the runtime decreases as

the probability threshold grows. Intuitively, this is because

higher probability thresholds enable Algorithm Top-k TUS
to prune more.

Varying L. Figure 9c shows that higher values of L yield

lower running times, though there is not a big difference

between L = 200 and L = 240.

Varying Number of Possible Worlds. Finally, Figure 9d

shows that more possible worlds leads to higher running

times. However, note that big differences in the number of

possible worlds yield small differences in running times,

Parameter Values Default value
k 1, 2, 5, All (Top-k TUS) All

1, 5, 10, All (Top-k PUS) All
τ 0.4, 0.6, 0.8 0.6
L 160, 200, 240, 280 200
# worlds 7 E+04, 4 E+05, 2 E+07 2 E+07

TABLE 2: Parameter values (parking lot dataset).
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Fig. 10: Running time of Algorithm Top-k PUS on the parking lot dataset.
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hence Algorithm Top-k TUS is able to scale well (this is

due to the application of Theorem 2 to compute PT (S)).
Runtime of Top-k PUS. The parameter values we used

are reported in Table 2.

Varying k. The runtimes for k = 1, 5, 10 differ slightly

from each other and are much lower than when all PUSs

had to be found (Figure 10a).

Varying τ . Figure 10b shows that the runtimes do not

change much for different values of τ .

Varying L. Figure 10c shows that higher values of L lead

to lower runtimes.

Varying Number of Possible Worlds. Figure 10d shows

that higher numbers of possible worlds lead to higher run-

times. As with TUSs, the runtime of Top-k PUS increases

reasonably despite the steep growth of possible worlds.

Runtimes of Top-k PUS are higher than for Top-k TUS
because computing PP (S) requires solving a non-linear

program whereas PT (S) requires solving linear programs.

Precision/Recall. In order to assess accuracy, we compared

the output of our algorithms against ground truth provided

by 8 human annotators who were taught the meaning of

graphical representations of activities in A (e.g., Figure 2).

They were asked to identify the totally and partially unex-

plained sequences w.r.t. A. We ran Top-k TUS and Top-k
PUS with values of τ ranging from 0.4 to 0.8, looking

for all totally and partially unexplained sequences (L was

set to 200). We use {Sa
i }i∈[1,m] to denote the unexplained

sequences returned by our algorithms and {Sh
j }j∈[1,n] to

denote the sequences flagged as unexplained by human

annotators. Precision and recall were computed as follows:

P =
|{Sa

i |∃Sh
j s.t. Sa

i ≈Sh
j }|

m and R =
|{Sh

j |∃Sa
i s.t. Sa

i ≈Sh
j }|

n
where Sa

i ≈p Sh
j means that Sa

i and Sh
j overlap by a

percentage no smaller than 75%.

Precision and recall when τ = 0.4, 0.6, 0.8 are shown in

Tables 3a and 3b, and show that the framework achieved a

good accuracy.

τ Precision Recall
0.4 62.5 89.17
0.6 66.67 82.5
0.8 72.22 71.67

(a) Top-k TUS

τ Precision Recall
0.4 59.65 77.38
0.6 64.91 74.6
0.8 70.18 71.83

(b) Top-k PUS

TABLE 3: Precision and recall (parking lot dataset).

7.1.2 Airport surveillance video
We also tested our algorithms with an airport video surveil-

lance dataset [41]. The set A of known activities includes

normal activities such as people passing, people chatting,

people seating, and abnormal activities like a person leaving

a package unattended, or a person taking an unattended

package. Examples of found unexplained sequences are a
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Fig. 11: Running time of Algorithm Top-k TUS on the airport dataset.
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person typing on a keypad next to a door with the door

closing afterwards, or a person leaving a suitcase on the

ground, standing next to it for a while looking at his watch

different times, taking the suitcase, and leaving the area.

Runtime of Top-k TUS. This data set is far more complex

(w.r.t. number of possible worlds) than the parking lot

data set - the “naı̈ve” algorithms did not terminate in a

reasonable amount of time, even with a video of 5 minutes.

Thus, we do not show the runtimes of the naı̈ve algorithms.

As in the case of the parking lot data set, we varied the k,
τ , L, # worlds parameters, as shown in Table 4.

Varying k. Figure 11a shows that Top-k TUS’s runtime

varies little with k when the video is up to 15 minutes long.

After that, the runtime for k = 1, 2, 5 are comparable, but

the runtime for k = All starts to diverge from them.

Varying τ . Figure 11b shows that the runtime when

τ = 0.4 is much higher than when τ = 0.6 and τ = 0.8
(the latter two cases do not show substantial differences in

Parameter Values Default value
k 1, 2, 5, All (Top-k TUS) All

1, 5, 10, All (Top-k PUS) All
τ 0.4, 0.6, 0.8 0.6
L 480, 600, 720, 840 600
# worlds 2 E+09, 6 E+20, 1 E+28 1 E+28

TABLE 4: Parameter values (airport dataset).

running time).

Varying L. Figure 11c shows that higher values of L yield

lower runtimes. Though the difference is small for videos

under 15 minutes, it increases for 20 minute videos.

Varying Number of Possible Worlds. Figure 11d shows

that runtimes for different numbers of possible worlds are

initially close (up to 15 minutes); then, the runtime for 1

E+28 possible worlds gets higher. There is only a moderate

increase in runtime corresponding to a huge increase of the

number of possible worlds—hence, Top-k TUS is able to

scale well when the video gets substantially more complex.

Runtime of Top-k PUS. We varied the k, τ , L, # worlds
parameters as reported in Table 4.

Varying k. Figure 12a shows that the runtime decreases as

k decreases.

Varying τ . Figure 12b shows that the runtimes for τ = 0.4
and τ = 0.6 are similar and higher than the one for τ = 0.8.

Varying L. Figure 12c shows that lower values of L give

higher running times. The runtimes are similar for L = 480
and L = 600 (the number of PUSs found in the video

are similar in both cases). Execution times are lower for

L = 720 and much lower for L = 800 (in this case, the

number of PUSs found in the video is approximately half

the number of PUSs found with L = 480 and L = 600).

Varying Number of Possible Worlds. Figure 12d shows

that though the runtime grows with the number of possible
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Fig. 12: Running time of Algorithm Top-k PUS on the airport dataset.
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(a) Varying k (τ = 0.6, L = 1200) (b) Varying τ (k = All, L = 1200)

(c) Varying L (τ = 0.6, k = All) (d) Varying number of worlds (τ = 0.6, k = All, L = 1200)

Fig. 13: Running time of Algorithm Top-k TUS on the cyber security dataset.

worlds, Top-k PUS responds well to the steep growth of

the number of possible worlds.

Precision/Recall. We evaluated the accuracy of Top-k TUS
and Top-k PUS in the same way as for the parking lot data

set. Precision and recall are reported in Tables 5a and 5b

and show that we achieved high accuracy.

τ Precision Recall
0.4 56.48 80.35
0.6 78.79 76.25
0.8 81.82 73.99

(a) Top-k TUS

τ Precision Recall
0.4 72.62 77.12
0.6 75 73.59
0.8 76.19 71.5

(b) Top-k PUS

TABLE 5: Precision and recall (airport dataset).

7.2 Cyber Security Domain
We also ran evaluations with a cyber security dataset

consisting of network traffic from a university network. We

used (i) Wireshark (http://www.wireshark.org/) to capture

network traffic and generate packet sequences, and (ii) Snort

(http://www.snort.org/) as the set of activity models A.

Runtime. We varied the k, τ , L, # worlds parameters as

shown in Table 6 and used all Snort rules as the set of

activity models.

Running times for Algorithm Top-k TUS and Algorithm

Top-k PUS are shown in Figures 13 and 14, respectively.

They confirm the trend already seen with video data:

runtime decreases as L and τ (resp. k and the number of

possible worlds) increase (resp. decrease).

Parameter Values Default value
k 1, 2, 5, All (Top-k TUS) All

1, 3, 6, All (Top-k PUS) All
τ 0.4, 0.6, 0.8 0.6
L 720, 1200, 1680, 1920 1200
# worlds 2341, 65457, 897653 897653

TABLE 6: Parameter values (cyber security dataset).

Accuracy. We measured accuracy as follows. Let A be the

set of all Snort rules. First, we detected all occurrences

of A in the data stream. We then ignored a certain subset

A′ of A and identified the unexplained sequences. Clearly,

ignoring models in A′ is equivalent to not having those

models available. Thus, occurrences of ignored activties

are expected to have a relatively high probability of being

unexplained as there is no model for them. We measured

the fraction of such occurrences that have been flagged as

unexplained for different values of τ .

Specifically, we considered two settings: one where only

ICMP rules in A were ignored, and another one where

only preprocessor rules in A were ignored.9 The results

9. ICMP rules are Snort rules designed to analyze ICMP packets (e.g.,
echo request a.k.a. ping) and alert on suspicious or malformed ICMP
packets. For instance, a ping sweep is a passive reconnaissance attack
that uses multiple echo requests to establish which IP addresses map to
live hosts. Some packets and applications have to be decoded into plain
text for Snort rules to trigger. Prepocessor rules are designed to handle
such situations. For instance, the arpspoof preprocessor is fed a list of
IP:MAC addresses. When it detects a layer-2 attack, it triggers an alarm
for a layer-2 event, such as multiple MAC addresses from a single IP.
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(a) Varying k (τ = 0.6, L = 1200)
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Fig. 14: Running time of Algorithm Top-k PUS on the cyber security dataset.

are reported in Tables 7 and 8 for Top-k TUS and Top-k
PUS, respectively, and show that our framework achieved

good accuracy. When ICMP rules were ignored, unex-

plained sequences were sequences where ICMP activities

were occurring, and likewise when preprocessor rules were

ignored.

τ Accuracy
0.4 85.71
0.6 71.42
0.8 68.17

(a) Ignoring ICMP rules

τ Accuracy
0.4 75.12
0.6 63.84
0.8 59.29

(b) Ignoring Preprocessor rules

TABLE 7: Accuracy of Top-k TUS (cyber security dataset).

τ Accuracy
0.4 91.24
0.6 83.39
0.8 72.84

(a) Ignoring ICMP rules

τ Accuracy
0.4 88.76
0.6 76.24
0.8 74.85

(b) Ignoring Preprocessor rules

TABLE 8: Accuracy of Top-k PUS (cyber security dataset).

7.3 Experimental Conclusions
Our experiments show that:

(i) Runtime increases with observation sequence length
(because there are more possible worlds, causing LC(v)
and NLC(v) to have more variables and constraints).

Despite the enormous blow-up in the number of possible

worlds, our algorithms perform very well showing quadratic

performance in all three datasets.

(ii) Runtime increases with the number of totally or partially
unexplained sequences present in the video. This is because

determining the exact endpoints of each TUS (resp. PUS)

is costly. Specifically, determining the exact end frame

of a TUS requires computing PT many times: when a

TUS is found, Top-k TUS (and also Top-k TUC) need

to go through the while loop of lines 7–14, the binary

search in the while loop of lines 16–25, and the if block

of lines 26–31. All these code blocks require PT to be

computed. Likewise, determining the exact start and end

frames of a PUS requires PP to be computed many times as

Algorithm Top-k PUS (as well as Algorithm Top-k PUC)

goes through different loops and binary searches (one to

determine the start frame, another to determine the end

frame) requiring multiple computations of PP .

(iii) In general, the number of TUSs and PUSs in the
observation sequence decreases as τ and L increase,

because higher values of τ and L are stricter conditions

for a sequence to be totally or partially unexplained.

(iv) Runtime decreases as k decreases because our algo-

rithms use k intelligently to infer that certain sequences

are not going to be in the result (aborting the loops and

binary searches mentioned above).

(v) Precision increases whereas recall decreases as τ
increases. The experimental results have shown that a good

compromise can be achieved by setting τ at least 0.6
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and that our framework had a good accuracy with all the

datasets we considered.

8 CONCLUSIONS

Suppose we have a sequence v of time-stamped observa-

tion data and a set A of “known” activities (normal or

suspicious). This paper addresses the problem of finding

subsequences of v that are not “sufficiently” explained

by the activities in A. We formally define what it means

for a sequence to be unexplained by defining totally and

partially unexplained sequences. We propose a possible

worlds framework and identify interesting properties that

can be leveraged to make the search for unexplained se-

quences highly efficient via intelligent pruning. We leverage

these properties to develop the Top-k TUS, Top-k PUS,

Top-k TUC, Top-k PUC algorithms to find totally and

partially unexplained sequences with highest probabilities.

We conducted experimentals over three datasets in the video

and cyber security domains showing that our approach has

good running time and high accuracy.

This paper represents a start towards detecting unex-

plained sequences in a domain independent way. Much

future work is possible. For instance, we may wish to allow

activity occurrences to violate the temporal constraints in

the stochastic automata based activity model by penalizing

such activity occurrences via diminished probabilities. This

can be done in many ways. Second, we would like to

increase scalability of our algorithms, possibly through

the development of specialized data structures to support

identification of the Top-k TUS, Top-k PUS, Top-k TUC,

Top-k PUC algorithms. Third, the assumption of indepen-

dence after conflict-based partitioning is convenient and

follows upon much work in computer science that makes

such assumptions—but it may not be appropriate for all

applications. Relaxing this assumption is also an important

direction for future work.
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