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Abstract—In certain applications, the locations of events reported by a sensor network need to remain anonymous. That is,

unauthorized observers must be unable to detect the origin of such events by analyzing the network traffic. Known as the source

anonymity problem, this problem has emerged as an important topic in the security of wireless sensor networks, with variety of

techniques based on different adversarial assumptions being proposed. In this work, we present a new framework for modeling,

analyzing, and evaluating anonymity in sensor networks. The novelty of the proposed framework is twofold: first, it introduces the

notion of “interval indistinguishability” and provides a quantitative measure to model anonymity in wireless sensor networks; second, it

maps source anonymity to the statistical problem of binary hypothesis testing with nuisance parameters. We then analyze existing

solutions for designing anonymous sensor networks using the proposed model. We show how mapping source anonymity to binary

hypothesis testing with nuisance parameters leads to converting the problem of exposing private source information into searching for

an appropriate data transformation that removes or minimize the effect of the nuisance information. By doing so, we transform the

problem from analyzing real-valued sample points to binary codes, which opens the door for coding theory to be incorporated into the

study of anonymous sensor networks. Finally, we discuss how existing solutions can be modified to improve their anonymity.

Index Terms—Wireless sensor networks (WSN), source location, privacy, anonymity, hypothesis testing, nuisance parameters,

coding theory

Ç

1 INTRODUCTION

SENSOR networks are deployed to sense, monitor, and
report events of interest in a wide range of applications

including, but are not limited to, military, health care, and
animal tracking [3], [4], [5]. In many applications, such
monitoring networks consist of energy constrained nodes
that are expected to operate over an extended period of
time, making energy efficient monitoring an important
feature for unattended networks. In such scenarios, nodes
are designed to transmit information only when a relevant
event is detected (i.e., event-triggered transmission). Conse-
quently, given the location of an event-triggered node,
the location of a real event reported by the node can be
approximated within the node’s sensing range. In the
example depicted in Fig. 1, the locations of the combat
vehicle at different time intervals can be revealed to an
adversary observing nodes transmissions.

There are three parameters that can be associated with an
event detected and reported by a sensor node: the
description of the event, the time of the event, and the
location of the event. When sensor networks are deployed

in untrustworthy environments, protecting the privacy of
the three parameters that can be attributed to an event-
triggered transmission becomes an important security
feature in the design of wireless sensor networks.

While transmitting the “description” of a sensed event in
a private manner can be achieved via encryption primitives
[6], [7], [8], [9], hiding the timing and spatial information of
reported events cannot be achieved via cryptographic
means [10], [11]. Encrypting a message before transmission,
for instance, can hide the context of the message from
unauthorized observers, but the mere existence of the
ciphertext is indicative of information transmission.

The source anonymity problem in wireless sensor net-
works is the problem of studying techniques that provide
time and location privacy for events reported by sensor
nodes. (Time and location privacy will be used inter-
changeably with source anonymity throughout the paper.)
The source anonymity problem has been drawing increas-
ing research attention recently [10], [11], [12], [13], [14], [15],
[16], [17], [18], [19], [20].

In the existing literature, the source anonymity problem
has been addressed under two different types of adver-
saries, namely, local and global adversaries. A local
adversary is defined to be an adversary having limited
mobility and partial view of the network traffic. Routing-
based techniques have been shown to be effective in hiding
the locations of reported events against local adversaries
[12], [13], [14], [15], [16]. A global adversary is defined to be
an adversary with ability to monitor the traffic of the entire
network (e.g., coordinating adversaries spatially distributed
over the network). Against global adversaries, routing-
based techniques are known to be ineffective in concealing
location information in event-triggered transmission. This is
due to the fact that, since a global adversary has full spatial
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view of the network, it can immediately detect the origin
and time of the event-triggered transmission.

The first step toward achieving source anonymity for
sensor networks in the presence of global adversaries is to
refrain from event-triggered transmissions [10]. To do that,
nodes are required to transmit fake messages even if there is
no detection of events of interest (real events will be used to
denote events of interest for the rest of the paper). When a
real event occurs, its report can be embedded within the
transmissions of fake messages. Thus, given an individual
transmission, an observer cannot determine whether it is
fake or real with a probability significantly higher than 1=2,
assuming messages are encrypted.

In the above approach, there is an implicit assumption of
the use of a probabilistic distribution to schedule the
transmission of fake messages. However, the arrival
distribution of real events is, in general, time-variant and
unknown a priori. If nodes report real events as soon as
they are detected (independently of the distribution of fake
transmissions), given the knowledge of the fake transmis-
sion distribution, statistical analysis can be used to identify
outliers (real transmissions) with a probability higher than
1=2, as illustrated in Fig. 2b. In other words, transmitting
real events as soon as they are detected does not provide
source anonymity against statistical adversaries analyzing a
series of fake and real transmissions.

One way to mitigate the above statistical analysis is
illustrated in Fig. 2c. As opposed to transmitting real events
as they occur, they can be transmitted instead of the next
scheduled fake one. For example, consider programming
sensor nodes to deterministically transmit a fake message
every minute. If a real event occurs within a minute from
the last transmission, its report must be delayed until
exactly 1 minute has elapsed. This approach, however,
introduces additional delay before a real event is reported
(in the above example, the average delay of transmitting
real events is half a minute). When real events have time-
sensitive information, such delays might be unacceptable.
Reducing the delay of transmitting real events by adopting
a more frequent scheduling algorithm is impractical for
most sensor network applications since sensor nodes are
battery powered and, in many applications, unchargeable.
Therefore, a frequent transmission scheduling will drasti-
cally reduce the desired lifetime of the sensor network.

The Statistical Source Anonymity (SSA) problem in
sensor networks is the study of techniques that prevent

global adversaries from exposing source location by
performing statistical analysis on nodes transmissions
[11], [19], [20], [21], [22], [23], [24]. Practical SSA solutions
need to be designed to achieve their objective under two
main constraints: minimizing delay and maximizing the
lifetime of sensors’ batteries.

Our Contribution. In this paper, we investigate the
problem of statistical source anonymity in wireless sensor
networks. The main contributions of this paper can be
summarized by the following points.

. We introduce the notion of “interval indistinguish-
ability” and illustrate how the problem of statistical
source anonymity can be mapped to the problem of
interval indistinguishability.

. We propose a quantitative measure to evaluate
statistical source anonymity in sensor networks.

. We map the problem of breaching source anonymity
to the statistical problem of binary hypothesis testing
with nuisance parameters.

. We demonstrate the significance of mapping the
problem in hand to a well-studied problem in
uncovering hidden vulnerabilities. In particular,
realizing that the SSA problem can be mapped to
the hypothesis testing with nuisance parameters
implies that breaching source anonymity can be
converted to finding an appropriate data transfor-
mation that removes the nuisance information.

. We analyze existing solutions under the proposed
model. By finding a transformation of observed data,
we convert the problem from analyzing real-valued
samples to binary codes and identify a possible
anonymity breach in the current solutions for the
SSA problem.

. We pose and answer the important research question
of why previous studies were unable to detect the
possible anonymity breach identified in this paper.

. We discuss, by looking at the problem as a coding
problem, a new direction to enhance the anonymity
of existing SSA solutions.

Organization. The rest of the paper is organized as follows:
In Section 2, we describe our network and adversarial
assumptions. In Section 3, we describe the proposed frame-
work. In Section 4, we describe the notion of statistical
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Fig. 2. Different approaches for embedding the report of real events
within a series of fake transmissions; (a) shows the prespecified
distribution of fake transmissions, (b) illustrates how real events are
transmitted as soon as they are detected, (c) illustrates how nodes
report real events instead of the next scheduled fake message.

Fig. 1. A sensor network deployed in a battlefield. Only nodes in close
proximity to the combat vehicle are broadcasting information, while other
nodes are in sleep mode.



goodness of fit tests and study its use in designing SSA
solutions. In Section 5, we provide experimental analysis of
statistical goodness of fit test-based approaches and quantify
their anonymity. In Section 6, we demonstrate the impor-
tance of converting the SSA problem into binary codes for
uncovering the hidden vulnerabilities missed by previous
studies. In Section 8, we extend the source anonymity
problem in sensor networks to include the network topology
into the anonymity analysis. In Section 9, we discuss related
work and conclude the paper in Section 10.

2 MODEL ASSUMPTIONS

In this section, we describe the network and adversarial
assumption that will be used in this paper.

2.1 Network Model

Communication is assumed to take place in a network of
energy constrained sensor nodes. Nodes are deployed to
sense events of interest and report them with minimum
delay. Consequently, given the location of a certain node, the
location of the reported event of interest can be approxi-
mated within the node’s communication range at the time of
transmission. When a node senses an event, it places
information about the event in a message and broadcast an
encrypted version of the message. To obscure the report of
an event of interest, nodes are assumed to broadcast fake
messages, even if no event of interest has been detected.
Nodes are also assumed to be equipped with a semantically
secure encryption algorithm, so that adversaries are unable
to distinguish between the reports of events of interest and
the fake transmissions by means of cryptographic tests.1

Furthermore, the network is assumed to be deployed in an
unreachable environment and, therefore, the conservation of
nodes’ energy is a design requirement.

2.2 Adversarial Model

The adversarial model used in this paper is similar to the
one considered in [10], [11], in that it is external, passive, and
global. An external adversary is an adversary who does not
control any of the nodes in the network. As opposed to
active adversaries injecting their own traffic or jamming the
network, a passive adversary is only capable of observing
the network traffic. A global adversary is an adversary who
can monitor the traffic of the entire network and can
determine the node responsible for the initial transmission
reporting an event of interest.

The justification behind this model is twofold. First, it
serves as a worst case scenario, when the coverage area of
the adversary is time varying and/or unknown. Second, it
represents a network of collaborating adversaries that can
cover the deployed sensor network.

The adversary is also assumed to know the distribution
of fake message transmissions. Furthermore, the adversary
is assumed capable of observing nodes transmissions over
extended periods of times and performing sophisticated
statistical analysis to compare the observed transmission

with the known distribution of fake messages. The adver-
sary, however, is not assumed able to break the security of
the encryption algorithm and distinguish the report of event
of interests via cryptographic tests.

3 PROPOSED FRAMEWORK FOR SSA

In this section, we introduce our source anonymity model
for wireless sensor networks. Intuitively, anonymity should
be measured by the amount of information about the
occurrence time and location of reported events an
adversary can extract by monitoring the sensor network.
The challenge, however, is to come up with an appropriate
model that captures all possible sources of information
leakage and a proper way of quantifying anonymity in
different systems.

3.1 Interval Indistinguishability

Currently, statistical anonymity in sensor networks is
modeled by the adversary’s ability to distinguish between
real and fake transmissions by means of statistical analysis.
That is, given a series of transmissions of a certain node, the
adversary must be unable to distinguish, with significant
confidence, which transmission carries real information and
which transmission is fake, regardless of the number of
transmissions the adversary may observe.

Consider now an adversary observing a sensor network
over multiple time intervals. Assume that, during a given
time interval, the adversary is able to notice a change in the
statistical behavior of transmission times of a certain node
in the network. This distinguishable change in the transmis-
sion behavior of the node can be indicative of the existence
of real activities detected and reported by that node during
that interval, even if the adversary was unable to
distinguish between individual transmissions.

Consequently, in many applications, modeling source
anonymity in sensor networks by the adversary’s ability to
distinguish between individual transmissions is insufficient to
guarantee location privacy. It must be the case that an
adversary monitoring the network over multiple time
intervals, in which some intervals contain real event
transmissions and the others do not, is unable to determine,
with significant confidence, which of the intervals contain
the real traffic. Formally, the notion of interval indistin-
guishability can be defined as follows:

Definition 1 (Interval indistinguishability). Let IF denotes a
time interval without any real event transmission (called the
“fake interval” for the rest of the paper), and IR denotes a time
interval with real event transmissions (called the “real
interval” for the rest of the paper). The two time intervals
are said to be statistically indistinguishable if the distributions
of intertransmission times during these two intervals cannot
be distinguished with significant confidence.

3.2 Interval versus Event Indistinguishability

This section illustrates the relation between the traditional
anonymity notion (i.e., individual event indistinguishabil-
ity) and the proposed anonymity notion (i.e., interval
indistinguishability). First, observe that as the length of
intervals decreases or the transmission rate is sparse,
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1. In cryptography, semantic security implies that, given a ciphertext,
unauthorized users without the knowledge of the decryption key have no
means of distinguishing between two plaintexts in which one of them
corresponds to the observed ciphertext [25].



interval indistinguishability approaches event indistin-
guishability. If each interval consists of a single transmis-
sion, interval indistinguishability is equivalent to event
indistinguishability.

However, in the more general scenario, in which
intervals contain more than a single transmission, interval
indistinguishability implies indistinguishability of indivi-
dual transmissions. To see this, assume a system satisfying
interval indistinguishability but does not satisfy individual
event indistinguishability. Since real and fake transmissions
are distinguishable, given a fake interval and a real interval,
the real interval can be identified as the one with the real
transmission; a contradiction to the hypothesis that the
system satisfies interval indistinguishability. That is, if
intervals are indistinguishable, then individual events
within them must also be indistinguishable.

In fact, the notion of interval indistinguishability is
strictly stronger than the traditional notion individual event
indistinguishability. That is, while interval indistinguish-
ability implies individual indistinguishability, the converse
is not true in general. This will be shown in Section 5 by
demonstrating that there exist schemes that achieve high
levels of individual indistinguishability while failing to
achieving satisfactory levels of interval indistinguishability.

3.3 Mapping Statistical Source Anonymity to Binary
Hypothesis Testing

In binary hypothesis testing, given two hypothesis, H0 and
H1, and a data sample that belongs to one of the two
hypotheses (e.g., a bit transmitted through a noisy commu-
nication channel), the goal is to decide to which hypothesis
the data sample belongs. In the statistical strong anonymity
problem under interval indistinguishability, given an
interval of inter-transmission times, the goal is to decide
whether the interval is fake or real (i.e., consists of fake
transmissions only or contains real transmissions).

Given Definition 1 of interval indistinguishability, con-
sider the following game between a challenger, C (the
system designer), and a statistical adversary, A.

Game 1 (Anonymity game).

1. C chooses two intervals IR and IF , in which IR is a real
interval and IF is a fake one.

2. C draws a bit b 2 f0; 1g uniformly at random and sets
IR ¼ Ib and IF ¼ Ib, where b denotes the binary
complement of b.

3. C gives Ib and Ib to A.
4. A makes any statistical test of her choice on Ib and Ib

and outputs a bit b0.
5. If b0 ¼ b, A wins the game.

Game 1 can be viewed as a standard binary hypothesis
testing problem. That is, given two hypotheses (a real
interval and a fake interval) and an observed data (an
interval of inter-transmission times of a sensor node), the
goal of the adversary is to determine to which hypothesis
the observed data belong (i.e., whether the observed
interval contains real event transmissions).

Remark 1. Although giving the adversary two intervals
might seem too strong of an assumption, it is actually a
practical one. To see this, note that the adversary can

always observe multiple time intervals, two for instance.
Then, all that is needed is to analyze these two observed
intervals. If they are distinguishable, then it is likely that
one of them is a real interval and the other is fake.
Moreover, an adversary can discover the distribution of
fake intervals by monitoring a node in the absence of real
events. Then, all that is needed is to observe different
time intervals. The more distinguishable a time interval
from the known fake interval, the more likely it is to
contain real events. Therefore, Game 1 is suitable to
analyze practical systems.

3.4 Quantifying Statistical Source Anonymity

With Definition 1 and Game 1, we aim to find a security
measure that can formally quantify the anonymity of
different systems. Let � denote any adversarial strategy
for breaching the anonymity of the system. Let Pr½b0 ¼ b��
denote the adversary’s probability of winning Game 1 using
strategy �. We quantify the anonymity of a sensor network
against the strategy � by

�� :¼ 1� 2ðPr½b0 ¼ b�� � 0:5Þ: ð1Þ

In the best case scenario, from the challenger’s stand-
point, the adversary’s strategy is a pure random guess;
leading to Pr½b0 ¼ b�� ¼ 1=2 and �� ¼ 1 (absolute anonym-
ity). In the worst case, the adversary will have a strategy
with Pr½b0 ¼ b�� ¼ 1 leading to �� ¼ 0 (no anonymity). Any
intelligent strategy will result in a probability of winning
the game belonging to the interval ½0:5; 1�, leading to an
anonymity measure in the interval ½0; 1� that is monotoni-
cally decreasing with the adversary’s success probability.

Now, let � be the set of all possible adversarial strategies
to breach the anonymity of the sensor network. Then, we
define the anonymity of the system as:

� :¼ min
�2�

��; ð2Þ

where �� is as defined in (1).
With the above definition of interval indistinguishability,

we introduce the notion of �-anonymity in sensor networks.

Definition 2 (�-anonymity). A wireless sensor network is said
to be �-anonymous if it satisfies two conditions

1. the anonymity of the system, as defined in (2), is at
least �,

2. there is no distinguishable transitional behavior
between intervals.

The second condition in Definition 2 ensures that the
adversary is unable to infer when an interval starts or when
it ends. This is necessary since an adversary with the
knowledge that a node is transitioning from one interval to
another will infer that either real events have started to
arrive or stopped from arriving. In either case, source
anonymity can be breached. In Table 1, the terms and
notations that will be used throughout the paper are listed.

4 STATISTICAL GOODNESS OF FIT TESTS AND THE

SSA PROBLEM

In the literature, statistical source anonymity is shown to be
achieved via the use of statistical goodness of fit tests [11],
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[19], [20], [21], [22], [23], [24]. In this section, we describe the
current use of statistical goodness of fit tests in designing
anonymous sensor networks.

4.1 SSA Solutions Based on Statistical Goodness
of Fit Tests

The statistical goodness of fit of an observed data describes
how well the data fits a given statistical model. Measures of
goodness of fit typically summarize the discrepancy
between observed values and the values expected under
the statistical model in question. Such measures can be
used, for example, to test for normality of residuals, to test
whether two samples are drawn from identical distribu-
tions, or to test whether outcome frequencies follow a
specified distribution. Examples of well-studied goodness
of fit tests include, but are not limited to, the Anderson-
Darling (A-D) test [26], the Kolmogorov-Smirnov (K-S) test
[27], the Jarque-Bera (J-B) test [28].

The following is a description of how statistical goodness
of fit tests have been used to design anonymous sensor
networks. Let sensor nodes be designed to transmit
independent identically distributed (iid) fake messages
according to a prespecified probabilistic distribution, D,
with a desired mean, �. Furthermore, let nodes store a
sliding window of times between consecutive transmissions
(intertransmission times), say XXi;XXiþ1; . . . ; XXkþi�1, where
XXj is the random variable representing the time between
the jth and the ðjþ 1Þst transmissions, and k is the length of
the sliding window.

Assume that, after the ðkþ iÞth transmission, a real event
is detected. Ideally, the intertransmission time for reporting
the detected event, represented by XXkþi, should be a
random variable drawn from D independently of all the
XXjs. To minimize delay, however, consider the following
use of a statistical goodness of fit test. Let YY be a random
variable drawn from D and let XXkþi ¼ YY � �, where � is
defined to be the largest positive number such that the
sequence of random variables in the sliding window,
fXXi; . . . ; XXkþig, passes the statistical goodness of fit test
for a sequence following the distribution D. That is, an
adversary recording the sequence of intertransmission
times will observe a sequence that is statistically indis-
tinguishable from an iid sequence of random variables with
the prespecified distribution of fake transmissions.

Observe, however, that by continuing in the same
fashion of transmitting real event as soon as possible, the
mean of the probabilistic distribution will skew away from
the desired mean, �, since nodes always favor shorter times

to transmit real events. To adjust the mean, the intertrans-
mission time between the report of the real event and next
transmission, XXkþiþ1 in this example, will be purposely
delayed. That is, let YY be a random variable drawn from D
and set XXkþiþ1 ¼ YY þ �, where � is defined to be the largest
positive number such that the sequence of random variables
in the sliding window, fXXiþ1; . . . ; XXkþiþ1g, passes the
statistical goodness of fit test for a sequence following the
distribution D. Then, as shown in [11], an adversary
observing the sensor node cannot differentiate between
real and fake transmissions. Fig. 3 illustrates an instance of
this approach.

4.2 Statistical Goodness of Fit under Interval
Indistinguishability

As discussed in Section 3.1, when an adversary can
distinguish between real and fake intervals, source location
can be exposed. In this section, we analyze statistical
goodness of fit-based solutions under the proposed model
of interval indistinguishability.

As before, let XXi be the random variable representing the
time between the ith and the ðiþ 1Þst transmissions and let
the desired mean of these random variables be �; i.e.,
IE½XXi� ¼ �, for all i (since the XXi’s are iid). We now examine
two intervals, a fake interval and a real one.

4.2.1 Fake Interval (IF )

Recall that, in the absence of real events, nodes are
programmed to transmit iid fake messages according to a
pre-specified probability distribution. That is, theXXis in fake
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TABLE 1
A List of Used Terms and Notations

Fig. 3. An illustration of solutions based on statistical goodness of fit
tests. Nodes transmit fake messages according to a prespecified
probabilistic distribution and maintain a sliding window of intertransmis-
sion times. When a real event occurs, it is transmitted as soon as
possible under the condition that the samples in the sliding window
maintain the designed distribution. The transmission following the real
transmission is delayed to maintain the mean of the distribution of
intertransmission times in the sliding window.



intervals are iid random variables with mean �. Therefore,
during any fake interval, IF , for any XXi�1; XXi 2 IF , one gets

IE
�
XXi j XXi�1 < �

�
¼ �; ð3Þ

by the fact that XXi�1 and XXi are independent by definition
and that IE½XXj� ¼ �, for all j’s.

4.2.2 Real Interval (IR)

By definition, real intervals will have both fake and real
transmissions. Let EEi be the random variable representing
the type of the event reported in the ith transmission, i.e.,
fake or real. Then, EEi can take the values R and F , where R
denotes a real event and F denotes a fake one. Since, in the
most general scenario, the distribution of interarrival times
of real events can be time variant and unknown beforehand,
we will assume that EEi can take the values R and F with
arbitrary probabilities.

Recall that the time between the transmission of a real
event and its preceding fake one is usually shorter than the
mean, �, by design (to reduce delay). Recall further that the
time between the transmission of a real event and its
successive one is usually longer than � by design (to adjust
the ensemble mean). That is, during any real interval, IR, for
any XXi�1; XXi 2 IR, one gets

IE
�
XXi j XXi�1 < �;EEi ¼ R

�
> �; ð4Þ

and,

IE
�
XXi j XXi�1 < �;EEi ¼ F

�
¼ �; ð5Þ

by design. Combining (4) and (5) one gets

IE
�
XXi j XXi�1 < �

�
¼ IE

�
XXi j XXi�1 < �;EEi ¼ R

�
� Pr½EEi ¼ R�

þ IE
�
XXi j XXi�1 < �;EEi ¼ F

�
� Pr½EEi ¼ F �

ð6Þ

> � � Pr½EEi ¼ R� þ � � Pr½EEi ¼ F � ¼ �: ð7Þ

An intertransmission time can be either shorter or longer
than �.2 For the rest of the paper, we call an intertransmis-
sion time that is shorter than � “short intertransmission
time” and an intertransmission time that is longer than �

“long intertransmission time.”
Equation (7) implies that short intertransmission times

are most likely to be followed by long intertransmission
times during real intervals. Therefore, by (3) and (7), short
intertransmission times followed by long intertransmission
times occur more frequently in real intervals than fake
intervals (for the rest of the paper, a short-long pattern will
be used to denote a short intertransmission time followed
by a long intertransmission time). Fig. 4 illustrates the short-
long patterns.

4.3 Questions Arising from Our Analysis

Our analysis in the previous section shows that real and fake
intervals in approaches based on statistical goodness of fit
tests can be theoretically distinguishable. This raises the

following question: Can the analysis in Section 4.2 be applied in
practical scenarios? If the presented analysis is indeed
applicable in practical setups, then the next questions will
be: What is the mathematical explanation for the seemingly
contradicting results of Section 4.2 and prior studies acknowl-
edging the effectiveness of statistical goodness of fit tests in
designing anonymous systems? That is, how can one explain the
fact that the use of statistical goodness of fit is known to be secure in
the literature while the analysis of Section 4.2 states otherwise?
The answers to these questions will be the main focus of
Sections 5 and 6, respectively. First we provide experimental
analysis in an attempt to investigate the first question.

5 EXPERIMENTAL ANALYSIS OF SSA SOLUTIONS

BASED ON STATISTICAL GOODNESS OF FIT

The use of statistical goodness of fit tests in designing
anonymous sensor networks was pioneered by Shao et al. in
[11] and followed by schemes that build on it or acknowl-
edge its effectiveness in providing secure SSA for sensor
networks, such as [19], [20], [21], [22], [23], [24]. In this
section, we analyze schemes based on statistical goodness
of fit tests using the ideas implied by the theoretical analysis
of Section 4.2.

5.1 Converting Real-Valued Samples to Binary
Codes

Let every intertransmission time that is shorter than the
mean � be represented by the binary digit “0,” and every
intertransmission time that is longer than the mean � be
represented by the binary digit “1.” That is, given a sequence
of real-valued intertransmission times X ¼ fx1; . . . ; xng,
the function g is applied to every intertransmission time as
follows:

gðxiÞ ¼
1; if xi > �
0; if xi � �

�
ð8Þ

for each i ¼ 1; . . . ; n. (We use g to denote the indicator
function instead of the commonly used notation, I, since I is
already used to denote an interval.) Then, the real-valued
sequence, X, is transformed into a binary code as follows:

f
�
X
�
¼ f

�
fx1; . . . ; xng

�
¼ fgðx1Þ; . . . ; gðxnÞg: ð9Þ

Observe that this is the same transformation used
implicitly in Section 4.2. That is, short-long patterns will
be represented by the ordered sequence “01.” Next, we
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Fig. 4. An illustration of interval distinguishability in the current state-of-
the-art solutions based on statistical goodness of fit tests. Real events
are transmitted sooner than what is determined by the probabilistic
distribution, while the transmission following the real event is later than
what is determined by the probabilistic distribution to fix the mean of the
predefined distribution.

2. Since intertransmission times are typically drawn from continuous
random variables, the probability of an inter-transmission time to be equal
to the mean, �, is zero.



describe the statistical measure that will be used in our

experimental analysis of SSA solutions based on statistical

goodness of fit tests.

5.2 Correlation Measure for Binary Hypothesis
Testing

In this section, we specify the statistical measure that will be

used to perform our experimental analysis of SSA

approaches based statistical goodness of fit tests. Let X ¼
fx1; . . . ; xng and Y ¼ fy1; . . . ; yng be two sequences of

length n. Define the correlation coefficient of the two

sequences by

�ðX;Y Þ¼
��nPn
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�Pn

i¼1 xi
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where xi and yi denote the ith elements of sequences X and

Y , respectively. It can be verified that the value of � is

always in the interval ½0; 1� [29]. When X and Y are

uncorrelated, � will be equal to zero. The higher value of �,

the more the two sequences are correlated.

5.3 Correlation Analysis of SSA Solutions Based on
Statistical Goodness of Fit Tests

The interpretation of the analysis of Section 4.2 in terms of

the transformation of the previous section is that each bit in

a binary code representing a fake interval is independent of

the all other bits, while bits in a binary code representing a

real interval are correlated. More specifically, a binary code

representing a real interval is likely to have more “01”

patterns than a binary code representing a fake interval.

This suggests to the following approach to distinguish

between fake and real intervals. First, generate a “reference”

binary code of the form

Ref ¼ f0; 1; 0; 1; . . . ; 0; 1g: ð11Þ

Now, let I0 and I1 be two time intervals in which one of

them contains real event transmissions and the other does

not. Let S0 and S1 be the two sequences of real-valued inter-

transmission times corresponding to I0 and I1, respectively.

Let X0 ¼ fðS0Þ and X1 ¼ fðS1Þ be the conversion of S0 and

S1 into their corresponding binary codes according to the

transformation of Section 5.1. Correlate X0 and X1 with the

reference code of (11); the binary code having a higher

correlation coefficient with the reference code is the one

corresponding to the real interval.
In the context of Game 1, given two intervals I0 and I1 in

which one is real and the other is fake, the adversary’s

decision is given by

DðI0; I1Þ ¼
0; if �ðRef; X0Þ > �ðRef; X1Þ
�; if �ðRef; X0Þ ¼ �ðRef; X1Þ
1; if�ðRef; X0Þ < �ðRef; X1Þ;

8<
: ð12Þ

where � denotes any decisional strategy to break a tie. That

is, the interval corresponding to the binary code that is

more correlated with the reference code is decided to be the

real one.

5.3.1 Experimental Parameters and Setup

In this section, We specify our parameters selection and
setup our experimental analysis of approaches based on
statistical goodness of fit tests.

Intertransmission times between fake transmissions are
chosen to be iid exponentials with a rate parameter � ¼ 20.
Real events arrive according to a Poisson Arrival process
with mean 1=20. The Anderson-Darling goodness of fit test
is used to determine the transmission times of real events
and the mean recovery algorithm. The two parameters of
the A-D test are the significance level of the test and the
allowed deviation from the mean which are set to 0.05 and
0.1, respectively.3

The experiment was run for 10,000 independent trials.
Each trial consists of two intervals, a real one, IR, and a fake
one, IF . Every trial starts with a “warm-up” period, where
200 iid exponential random variables with rate 20 are
drawn to constitute a backlog to be used in the A-D
goodness of fit test. Then, real events start arriving and they
are transmitted according to the procedure described in
Section 4.1 (interested readers may refer to [11] for more
detailed algorithms of the transmission mechanism). Each
real interval consists of 50 real events. After the 50th real
event has been transmitted, the fake interval starts for the
same amount of time the real interval lasted.

For each of the 10,000 independent trials, denote by S
ðiÞ
R

the sequence of intertransmission times of the real interval

of the ith trial and, similarly, denote by S
ðiÞ
F the sequence of

inter-transmission times of the fake interval of the ith trial.

The numbers in S
ðiÞ
R and S

ðiÞ
F will be real valued that are

indistinguishable from iid exponential random variables.

Let X
ðiÞ
R ¼ fðS

ðiÞ
R Þ and X

ðiÞ
L ¼ fðS

ðiÞ
L Þ, where f is the function

defined in (9), be the binary conversion of the real-valued

intertransmission times of the real and fake intervals of the

ith trial.

Following the decision rule in (12), we correlate X
ðiÞ
R and

X
ðiÞ
F with the reference sequence Ref for all i ¼ 1; . . . ; 10;000.

Intuitively, the test is said to be successful in distinguishing

between real and fake intervals in the ith trial if �ðRef; X
ðiÞ
R Þ >

�ðRef; X
ðiÞ
F Þ and unsuccessful if �ðRef; X

ðiÞ
R Þ < �ðRef; X

ðiÞ
F Þ.

When �ðRef; X
ðiÞ
R Þ ¼ �ðRef; X

ðiÞ
F Þ one of the intervals is

chosen to be the real one uniformly at random.

5.3.2 Experimental Results and Anonymity

Interpretation

Out of the 10,000 independent trials, the following results
were obtained:

. �ðRef; X
ðiÞ
R Þ > �ðRef; X

ðiÞ
F Þ in 7,301 trials;

. �ðRef; X
ðiÞ
R Þ < �ðRef; X

ðiÞ
F Þ in 2,695 trials;

. �ðRef; X
ðiÞ
R Þ ¼ �ðRef; X

ðiÞ
F Þ in four trials.

Now, consider Game 1 for analyzing interval indis-
tinguishability. Given two intervals I0 and I1 at which one
of them is real and one is fake, let the adversary’s strategy
for deciding which is which be according to the decision
rule in (12). Then, given the simulation results provided
above, the adversary’s probability of correctly identifying
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3. These are the same parameters appeared in [11].



real intervals is 0.730. In other words, the anonymity of the
system is at most � ¼ 0:539, significantly far away from the
desired � � 1 claimed and acknowledged in prior studies
such as [11], [19], [20], [21], [22], [23], [24].

6 EXPLANATION FOR DISCREPANCIES BETWEEN

OUR RESULTS AND PRIOR STUDIES

The results of Section 5 provide an answer to the first
question raised in Section 4.3. Namely that the analysis of
Section 4.2 can improve the adversary’s chances of
distinguishing real from fake intervals and, ultimately,
breaching the anonymity of the system in practical setups is
possible. Now, it remains to investigate the second question
raised in Section 4.3. Namely, is there a contradiction
between our results and previous studies and, if not, how
can we explain such discrepancies mathematically. The
keys to answer such questions are “interval indistinguish-
ability” and “nuisance information.” We start by a brief
background.

6.1 Nuisance Parameters

In statistical decision theory, the term “nuisance para-
meters” refers to information that is not needed for
hypothesis testing and, further, can preclude a more
accurate decision making [30]. When performing hypoth-
esis testing of data with nuisance parameters, it is desired
(even necessary in some scenarios) to find an appropriate
transformation of the data that removes or minimizes the
effect of the nuisance information before performing the
hypothesis testing [30]. That is, given a data sample X ¼
ðx1; . . . ; xnÞ that belongs to one of two possible hypotheses
H0 or H1, the test is performed on a transformation of the
data sample, fðXÞ, rather than the original data itself, X.
The transformation function, f , is an application dependent
and choosing the right function is a critical step in
hypothesis testing with nuisance parameters [30].

6.2 Significance of Interval Indistinguishability and
Nuisance Removal

In the literature, the use of statistical goodness of fit to
design anonymous sensor networks is known to be secure.
The analysis of Section 5, on the other hand, demonstrates
that this is not the case. While this might look like a
contradiction, there is a mathematical justification for such
discrepancy, which can be divided into two points. First,
previous studies model statistical source anonymity by the
adversary’s ability to distinguish between individual trans-
missions. That is, given a sequence of intertransmission
times, the adversary is shown to be unable to determine
which transmission is fake and which one is real. The
interval indistinguishability notion introduced in this
paper,4 on the other hand, assumes that source anonymity
can be breached when adversaries can successfully distin-
guish between real and fake intervals.

Observe that no tool in our analysis is introduced to
allow the adversary to infer which transmission is real and
which one is fake within the real interval itself. That is, if the
analysis of Section 5 is repeated with the assumption that

anonymity is breached only if the adversary can distinguish
between individual fake and real transmissions, the
anonymity of the system will be different then the obtained
0.539 (it might very well be close to the desired � � 1 since
we do not present any mechanism to distinguish between
individual transmissions). Therefore, the notion of interval
indistinguishability is essential in explaining the discrepan-
cies between our results and prior studies that model SSA
by the adversary’s ability to distinguish between individual
real and fake transmissions.

Interval indistinguishability alone, however, does not
explain why our results are different than what is believed in
prior work. That is, even though different statistical tools are
used to measure anonymity (statistical goodness of fit tests
are used to analyze anonymity in previous studies while we
use the correlation measure specified in Section 5.2), the
difference in the used statistical measure does not explain
the discrepancies between our results and prior work.

The conversion of real-valued intertransmission times
into binary codes is the main reason for the differences
between our anonymity results of Section 5 and prior
studies. The conversion to binary codes is a key-enabling
tool for the removal of nuisance information precluding
successful hypothesis testing. The following experimental
analysis demonstrate the significance of the binary code
conversion.

6.2.1 Experimental Parameters and Setup

In order to examine the effect of binary code conversion for
nuisance removal, the experimental analysis of Section 5 is
repeated with the real-valued intertransmission times as
opposed to their binary transformation. Ten thousand
independent trials are performed. In very trial, a real
interval, S

ðiÞ
R , and a fake interval, S

ðiÞ
F , are generated with the

same parameters of Section 5.3.1. In each trial, the two
intervals are correlated with a reference sequence using the
formula in (10). However, as opposed to the binary
reference code of (11), one real interval, Refrv, that serves
as a reference sequence of real-valued intertransmission
times is generated as a reference sequence.

6.2.2 Experimental Results and Anonymity

Interpretation

Out of the 10,000 independent trials, the following results
were obtained:

. �ðRefrv; S
ðiÞ
R Þ > �ðRefrv; S

ðiÞ
F Þ in 5,076 trials;

. �ðRefrv; S
ðiÞ
R Þ < �ðRefrv; S

ðiÞ
F Þ in 4,924 trials;

. �ðRefrv; S
ðiÞ
R Þ ¼ �ðRefrv; S

ðiÞ
F Þ in 0 trials.5

Under the same adversarial strategy of deciding which
interval is real and which is fake given in (12), the system is
0.984-anonymous using real-valued intertransmission
times. This result agrees with previous studies in that the
sequences corresponding to any trial, whether real or fake,
are statistically indistinguishable from iid exponential
random variables. On the other hand, when the same
system is analyzed using the binary code conversion of
intertransmission times it was only 0.539-anonymous. The
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4. Recall that, as discussed in Section 3.2, interval indistinguishability
implies individual transmission indistinguishability.

5. This is expected since we are dealing with real valued intertransmis-
sion times in this case.



importance of this result is that it shows how the actual
lengths of intertransmission times can act as nuisance and
prevent accurate hypothesis testing.

The results of this section conclude our explanations to
the questions posed in Section 4.3. In particular, the results
show that there is no contradiction between the results
obtained and acknowledged in prior studies and our result
of Section 4.2, and that the combination of the interval
indistinguishability model and the existence of nuisance
information is the mathematical explanation for such
seemingly contradicting results.

7 IMPROVING SSA VIA INDUCED CORRELATION IN

FAKE INTERVALS

Our analysis of SSA solutions based on statistical goodness
of fit tests shows that the use of such statistical tools is
insufficient to guarantee source anonymity. In particular,
not only the real-valued intertransmission times must be
indistinguishable from the desired distribution of fake
transmissions, but also the binary codes representing the
intertransmission times of fake and real intervals must
have indistinguishable statistical properties. In what
follows, we describe a modification to approaches based
on statistical goodness of fit tests to improve their
anonymity. The main idea behind the proposed approach
is the attempt to induce the same correlation pattern of
intertransmission times during real intervals into inter-
transmission times during fake intervals.

7.1 The Proposed Approach

As can be seen from the analysis in Section 4.2, inter-
transmission times during fake intervals are iid’s, while
intertransmission times during real intervals are neither
independent nor identically distributed. In theory, the only
way to guarantee that a sequence of random variables is
statistically indistinguishable from a given iid sequence is to
generate it as an iid sequence with the same distribution.

The notion of interval indistinguishability, suggests a
different approach for the design of anonymous sensor
networks. Observe that Definition 1 of interval indistinguish-
ability does not impose any requirements, such as iid, on the
distribution of intertransmission times during fake intervals.
Therefore, designing fake intervals with the distribution that
is easiest to emulate during real intervals is the most logical
solution. This idea opens the door for more solutions as it
gives more flexibility for system designers.

To improve anonymity, we suggest introducing the same
correlation of intertransmission times during real intervals
to intertransmission times during fake intervals. That is, let
the transmission procedure consists of two different
algorithms: AR and AF . In the presence of real events (i.e.,
in real intervals), algorithm AR is implemented. In the
absence of real events (i.e., in fake intervals), algorithm AF

is implemented. Algorithm AR is the same as the algorithm
described in Section 4.1. In algorithm AF , the nodes
generates two sets of events independently of each other:
“dummy events” and fake events. Fake events serve the
same purpose they serve in algorithm AR, that is, they
are used to hide the existence of real transmissions. Since
there are no real events in fake intervals, however, dummy
events are generated to be handled as if they are real events.

That is, dummy events are generated independently of fake
messages and, upon their generation, their transmission
times are determined according to the used statistical
goodness of fit test. The purpose of this procedure is to
introduce the same correlation of real intervals into fake
intervals. That is, not only the two sequences of inter-
transmission times will be statistically indistinguishable by
means of statistical goodness of fit tests, but also the binary
codes representing fake and real intervals will have the
same statistical behavior. (There is more to be done to
decide how nodes switch from algorithm AR to AF and vice
versa, but since this is not the main focus of this paper, we
defer detailed discussion to future investigation that
converts the solution to coding problem.)

7.2 Experimental Parameters and Setup

The same experimental analysis of Section 5 is performed
with one major difference. To make fake intervals possess
the same correlation of real intervals, we implemented the
AF algorithm described above. Dummy events were
generated according to iid Gaussian interarrival times with
mean 0.05 seconds and a variance of 0.02. (We reemphasize
the distinction between fake messages and dummy events:
fake messages are the ones transmitted to hide the existence
of real transmissions, while dummy events are the ones
generated, during fake intervals only, to resemble the
existence of real events.) Note that the interarrival distribu-
tion of dummy events is purposely different than the
interarrival distribution of real events to count for the
general case of unknown distribution of real events
interarrivals. The A-D test is used in both algorithms, AR

and AF , to determine the transmission times of real events
and dummy events, respectively.

7.3 Experimental Results and Anonymity
Interpretations

By running the experiment for 10,000 independent trials,
the following observations were recorded.

. �ðRef; X
ðiÞ
R Þ > �ðRef; X

ðiÞ
F Þ in 5,161 trials;

. �ðRef; X
ðiÞ
R Þ < �ðRef; X

ðiÞ
F Þ in 4,832 trials;

. �ðRef; X
ðiÞ
R Þ ¼ �ðRef; X

ðiÞ
F Þ in seven trials.

In terms of the anonymity measure of (1), the system is
0.967-anonymous under the adversarial strategy of (12).
Observe the improvement in anonymity against correlation
attacks in our modified version (from 0.539 without the use
of dummy events to 0.967 when dummy events are used).
Table 2 summarizes our experimental results.

7.4 Performance of the Solution

Compared to the original SSA scheme described in
Section 4.1, the solution presented in this section induces
more computational overhead. That is, while the original
scheme described in Section 4.1 requires nodes to perform
statistical goodness of fit tests during real intervals only, the
solution of this section involves the use of statistical
goodness of fit test in both real and fake intervals. Note,
however, that the solution of this section does not involve
extra communication overhead, only rescheduling of fake
transmissions that must be sent anyway. This is an
important observation since communication consumes
orders of magnitude more energy than computations
(depending on hardware, transmitting one bit may consume
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up to 2,900 times the energy consumed by performing one
instruction) [31].

We emphasize, however, that this solution is merely
presented to illustrate how to improve the anonymity of
approaches based on statistical goodness of fit tests. The
main focus of this work is to come up with a framework
that can be used to design and analyze anonymous sensor
networks. Using the proposed framework, including the
mapping of the problem of statistical source anonymity to
coding theory, in order to design more efficient schemes
that satisfy the notion of interval indistinguishability is an
open research problem.

8 EFFECT OF NETWORK TOPOLOGY ON SOURCE

ANONYMITY

So far, anonymity discussions were restricted to single-hop
analysis. However, since the adversary, by assumption, has
a global view of the network, the adversary can utilize his/
her knowledge of the network’s topology to increase the
advantage of exposing secret location information. In this
section, we bring the network’s topology into the picture to
illustrate the importance of increasing the anonymity of
each node.

Assume the network is deployed to monitor a moving
target. Assume further that a global adversary will have a
55 percent chance of distinguishing between real and fake
intervals. In some scenarios, a 0.45 probability of false alarm
(the probability that the adversary has concluded a certain
interval is real while it is fake) can be considered high
enough to prevent the adversary from taking the risk. Since
the adversary has a global view of the network, however,
he/she can correlate the analysis to the next hop by
monitoring adjacent sensor nodes.

Consider the example of Fig. 5 and assume the
adversary’s chance of distinguishing between real and fake
intervals of each node’s transmissions is 55 percent. In such
a scenario, according to (1), the anonymity of each node is
� ¼ 0:9. The monitored target, however, is moving and
node b will start reporting its existence. On average, the
adversary will also have a 55 percent chance of breaking
the anonymity of node b. Combining the observations from
node a and b, the anonymity is reduced to be �2 ¼ 0:81.
Consequently, by the time the target reaches node e,
the anonymity is already reduced to 0.59. That is, given the
adversary’s knowledge of the network topology, the
anonymity of a moving target is an exponentially decreas-
ing function of the number of hops reporting its proximity.

In a different direction, consider the case in which
multiple nodes are reporting the same event simulta-
neously, as depicted in Fig. 6. Then, even if the target is
stationary, the anonymity is reduced to �6 ¼ 0:53 (assuming
the anonymity of each node is 0.9).

Therefore, unless the anonymity of each node is � ¼ 1,
or if there is a multihop anonymous design, global
adversaries can substantially increase their advantages of
breaking the anonymity of the sensor network by utilizing
their knowledge of the network topology and performing
multihop analysis.

9 RELATED WORK

The privacy problem in wireless sensor networks comes in
different flavors. Proposals dealing with providing sink
anonymity in wireless sensor networks have appeared in,
e.g., [32], [33], [34], [35], [36]. Network coding-based
approaches that protect against traffic analysis have ap-
peared in, e.g., [37], [38], [39]. The privacy problem most
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TABLE 2
A Quantitative Comparison of the Statistical Goodness of Fit Test-Based Approach of Section 4.1

After the Transformation of Section 5.1 (i.e., without Nuisance), the Statistical Goodness of Fit
Test-Based Approach of Section 4.1 without the Transformation of Section 5.1 (i.e., with Nuisance), and
Our Improved SSA Solution of Section 7 After the Transformation of Section 5.1 (i.e., without Nuisance)

�
R
> �

F
denotes larger correlation coefficient in real intervals, �

R
< �

F
denotes larger correlation coefficient in fake intervals, while �

R
¼ �

F
denotes

equal correlation coefficient in real and fake intervals. The simulation results are obtained from 10,000 independent trials.

Fig. 5. An example of a sensor networks monitoring a moving target. As
the tank moves along its path, nodes a, b,c, d, and e report that the tank
is within their sensing range.

Fig. 6. An example of multiple sensor nodes reporting a stationary event.
Six nodes are simultaneously reporting that the tank is within their
sensing range.



relevant to this work is the source location privacy in wireless
sensor networks. Li et al. presented a state-of-the-art survey
on privacy preservation in wireless sensor networks [20].

The source location privacy in sensor networks is part of
a broader area, the design of anonymous communication
systems. The foundation for this field was laid by Chaum in
[40], and since then has become a very active area of
research. In particular, topics related to location anonymity
have been discussed by Reed et al. in [41], who introduced
the idea of preserving anonymity through onion routing,
and by Gruteser and Grunwald in [42], who discussed ways
to provide anonymity in location-based services, such as
Global Positioning Systems.

In wireless sensor networks, much of the work in source
location privacy assumes a passive, local eavesdropper
operating close to the base station. Privacy is maintained in
such models through anonymous routing. The location
privacy problem was first introduced in [12], [13]. The local
eavesdropper model was introduced and the authors
demonstrated that existing routing methods were insuffi-
cient to provide location privacy in this environment. They
also proposed a phantom flooding scheme to solve the
problem. In [17], Xi et al. proposed a new random walk
routing method that reduces energy consumption at the
cost of increased delivery time. Path confusion has also
been proposed as an anonymity-preserving routing scheme
by Hoh and Gruteser in [18]. In [14], Ouyang et al.
developed a scheme in which cycles are introduced at
various points in the route, potentially trapping the
adversary in a loop and forcing the adversary to waste
extra resources. In [21], Wang et al. proposed a technique to
maximize source location privacy by designing routing
protocols that distribute message flows to different routes.

However, in the global adversarial model, in which the
adversary has access to all transmissions in the network,
routing-based schemes are insufficient to provide location
privacy [10], [11]. The global adversarial model was first
introduced by Mehta et al. in [10]. The authors motivated
the problem, analyzed the security of existing routing-based
schemes under the new model, and proposed two new
schemes. In the first scheme, some sensor nodes act as fake
sources by mimicking the behavior of real events. For
example, if the network is deployed to track an animal, the
fake sources could send fake messages with a distribution
resembling that of the animal’s movements. This, however,
assumes some knowledge of the time distribution of real
events. In the second scheme, packets (real and fake) are
sent either at constant intervals or according to a pre-
determined probabilistic schedule. Although this scheme
provides perfect location privacy, it also introduces un-
desirable performance characteristics, in the form of either
relatively high delay or relatively high communication and
computational overhead. The scheme of [11] was proposed
to address this delay/overhead tradeoff.

In [11], Shao et al. introduced the notion of statistically
strong source anonymity in which a global adversary with
ability to monitor the traffic in the entire network is unable
to infer source locations by performing statistical analysis
on the observed traffic. In order to realize their notion of
statistical anonymity, nodes are programmed to transmit
fake events according to prespecified distribution. More
specifically, after the transmission of every fake event,

the node draws an exponentially distributed random
variable t � Expð�Þ, where � is the prespecified rate of the
exponential distribution. The node then waits for t time
units and then transmits another fake event. That is, in
the absence of real event transmissions, an adversary
monitoring the sensor node will observe intertransmission
times that are iid exponentials with mean � ¼ 1=�.

Upon the occurrence of real events, the goal of a sensor
node is to transmit them while maintaining the exponential
distribution of the intertransmission times. Obviously, if
nodes delay their transmission of real events to the next
scheduled fake transmission, no statistical test can be used
to distinguish between real and fake events (since inter-
transmission times are kept exponential iid’s with the same
rate). The goal in [11], however, is to minimize the latency
of reporting real events while maintaining statistical
indistinguishability between real and fake transmissions.

To reduce the latency, the authors of [11] proposed the
following procedure: let imdi represent the intertransmis-
sion time between the ith and the ðiþ 1Þst transmissions.
Assume a real event has occurred after the transmission of
the ith event. Given fimd1; imd2; . . . ; imdig, imdiþ1, the time
after the transmission of the ith event the node must wait
before it can transmit the real event, is determined as
follows: imdiþ1 is the smallest positive value such that the
sequence fimd1; imd2; . . . ; imdi; imdiþ1g passes the Ander-
son-Darling goodness of fit test [43] for a sequence of iid
exponentials with mean �.

Observe, however, that on average imdiþ1 < � since
imdiþ1 is, by definition, the minimum value that passes the
test. Therefore, continuing in this fashion will cause the mean
of the entire sequence to skew away from desired mean.

To solve the problem of mean deviation described above,
the scheme in [11] includes a mean recovery algorithm. The
mean recovery algorithm outputs a delay � and the time
between the transmission of a real event and the following
event (fake or real) is set to imdiþ2 ¼ tþ �, where t �
Exponentialð�Þ. The scheme in [11] is designed so that the
sequence fimd1; . . . ; imdng, where n is the last transmitted
message, always passes the A-D goodness of fit test.

To reduce the amount of traffic in the network that is due
to the transmission of fake events, techniques based on
node proxies and data aggregation have been proposed
[19], [44]. In such techniques, the overall communication
overhead is reduced by making intermediate nodes act as
proxies that filter out fake messages or by aggregating
multiple messages in a single transmission. Such ap-
proaches make schemes based on generating fake messages
more attractive by mitigating the high communication
overhead issue.

Shao et al. also consider the problem of an active
adversary in [45]. Their adversary also has the ability to
perform node compromise attacks, and they develop tools
to prevent the adversary from gaining access to event data
stored in a node even if the adversary possesses that node’s
secret keys.

In recent works, Li and Ren [46] proposed a scheme to
provide both content confidentiality and source-location
privacy through routing to a randomly selected intermedi-
ate node (RRIN) and a network mixing ring (NMR), where
the RRIN provides local source location privacy and NMR
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yields network-level (global) source location privacy.
Ouyang et al. [47] proposed four schemes: naive, global,
greedy, and probabilistic to protect the source location
against global adversaries in. Abbasi et al. [48] proposed a
distributed algorithm to mix real event traffic with carefully
chosen dummy traffic to hide the real event traffic pattern.

10 CONCLUSION AND FUTURE WORK

In this paper, we provided a statistical framework based on
binary hypothesis testing for modeling, analyzing, and
evaluating statistical source anonymity in wireless sensor
networks. We introduced the notion of interval indistin-
guishability to model source location privacy. We showed
that the current approaches for designing statistically
anonymous systems introduce correlation in real intervals
while fake intervals are uncorrelated. By mapping the
problem of detecting source information to the statistical
problem of binary hypothesis testing with nuisance para-
meters, we showed why previous studies were unable to
detect the source of information leakage that was demon-
strated in this paper. Finally, we proposed a modification to
existing solutions to improve their anonymity against
correlation tests.

Future extensions to this work include mapping the
problem of statistical source anonymity to coding theory in
order to design an efficient system that satisfies the notion
of interval indistinguishability.
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